Publications by authors named "Alvin C M Kwok"

Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis.

View Article and Find Full Text PDF

Peridinin-containing dinoflagellate plastomes are predominantly encoded in nuclear genomes, with less than 20 essential chloroplast proteins carried on "minicircles". Each minicircle generally carries one gene and a short non-coding region (NCR) with a median length of approximately 400-1000 bp. We report here differential nuclease sensitivity and two-dimensional southern blot patterns, suggesting that dsDNA minicircles are in fact the minor forms, with substantial DNA:RNA hybrids (DRHs).

View Article and Find Full Text PDF

The heterotrophic is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae.

View Article and Find Full Text PDF

Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL).

View Article and Find Full Text PDF

Dinoflagellates are important aquatic microbes and major harmful algal bloom (HAB) agents that form invasive species through ship ballast transfer. UV-C installations are recommended for ballast treatments and HAB controls, but there is a lack of knowledge in dinoflagellate responses to UV-C. We report here dose-dependent cell cycle delay and viability loss of dinoflagellate cells irradiated with UV-C, with significant proliferative reduction at 800 Jm doses or higher, but immediate LD50 was in the range of 2400-3200 Jm .

View Article and Find Full Text PDF

The Plasma Membrane Proteolipid 3 (PMP3, UPF0057 family in Uniprot) family consists of abundant small hydrophobic polypeptides with two predicted transmembrane helices. Plant homologues were upregulated in response to drought/salt-stresses and yeast deletion mutants exhibited conditional growth defects. We report here abundant expression of Group I PMP3 homologues (PMP3(i)hs) during normal vegetative growth in both prokaryotic and eukaryotic cells, at a level comparable to housekeeping genes, implicating the regular cellular functions.

View Article and Find Full Text PDF

Dinoflagellates have some of the largest genomes, and their liquid-crystalline chromosomes (LCCs) have high degrees of non-nucleosomal superhelicity with cation-mediated DNA condensation. It is currently unknown if condensins, pentameric protein complexes containing structural maintenance of chromosomes 2/4, commonly involved in eukaryotic chromosomes condensation in preparation for M phase, may be involved in the LCC structure. We find that CcSMC4p (dinoflagellate SMC4 homolog) level peaked at S/G2 phase, even though LCCs do not undergo global-decondensation for replication.

View Article and Find Full Text PDF

Cellulose synthesis (CS) is conducted by membrane-bound cellulose synthase complexes (CSCs), containing cellulose synthases (CesA), that are either arranged in hexagonal structures in higher plants or in linear arrays in most microbial organisms, including dinoflagellates. Dinoflagellates are a major phytoplankton group having linear-type CSCs and internal cellulosic thecal plates (CTPs) in large cortical vesicles. Immunological study suggested CesA1p were cortically localized to the periphery of CTPs.

View Article and Find Full Text PDF

Cellulose synthesis, but not its degradation, is generally thought to be required for plant cell growth. In this work, we cloned a dinoflagellate cellulase gene, dCel1, whose activities increased significantly in G(2)/M phase, in agreement with the significant drop of cellulose content reported previously. Cellulase inhibitors not only caused a delay in cell cycle progression at both the G(1) and G(2)/M phases in the dinoflagellate Crypthecodinium cohnii, but also induced a higher level of dCel1p expression.

View Article and Find Full Text PDF

Dinoflagellates constitute an important group of microorganisms. Symbiotic dinoflagellates are responsible for the primary production of coral reef ecosystems and the phenomenon of their demise is known as "coral bleaching." Blooming of the planktonic dinoflagellates is the major cause of "red tides.

View Article and Find Full Text PDF

Protoplast and spheroplast preparations allow the transfer of macromolecules into cells and provide the basis for the generation of engineered organisms. Crypthecodinium cohnii cells harvested from polyethylene glycol-containing agar plates possessed significantly lower levels of cellulose in their cortical layers, which facilitated the delivery of fluorescence-labeled oligonucleotides into these cells.

View Article and Find Full Text PDF

Prokaryotic histone-like proteins (Hlps) are abundant proteins found in bacterial and plastid nucleoids. Hlps are also found in the eukaryotic dinoflagellates and the apicomplexans, two major lineages of the Alveolata. It may be expected that Hlps of both groups were derived from the same ancestral Alveolates.

View Article and Find Full Text PDF

The activation of cell cycle regulators at the G1/S boundary has been linked to the cellular protein synthesis rate. It is conceivable that regulatory mechanisms are required to allow cells to coordinate the synthesis of other macromolecules with cell cycle progression. The availability of highly synchronized cells and flow cytometric methods facilitates investigation of the dynamics of lipid synthesis in the entire cell cycle of the heterotrophic dinoflagellate Crypthecodinium cohnii.

View Article and Find Full Text PDF

The dinoflagellates, a diverse sister group of the malaria parasites, are the major agents causing harmful algal blooms and are also the symbiotic algae of corals. Dinoflagellate nuclei differ significantly from other eukaryotic nuclei by having extranuclear spindles, no nucleosomes and enormous genomes in liquid crystal states. These cytological characteristics were related to the acquisition of prokaryotic genes during evolution (hence Mesokaryotes), which may also account for the biochemical diversity and the relatively slow growth rates of dinoflagellates.

View Article and Find Full Text PDF

Cellulosic deposition in alveolar vesicles forms the "internal cell wall" in thecated dinoflagellates. The availability of synchronized single cells, the lack of secondary deposition, and the absence of cellulosic cell plates at division facilitate investigation of the possible roles of cellulose synthesis (CS) in the entire cell cycle. Flow cytograms of cellulosic contents revealed a stepwise process of CS in the dinoflagellate cell cycle, with the highest rate occurring at G(1).

View Article and Find Full Text PDF