Winter legume cover crops or double-cropping in high N-fertilizer maize-based sprinkler-irrigated systems enhance agroecosystem diversity and potentially increase yields. However, the effects on direct NO emissions and global warming potential (GWP) have not been fully established. For two years, in the Ebro Valley (Spain), four maize-based systems consisted of: long-season maize (Zea mays) with winter fallow period (F-LSM) the reference system; or after a leguminous cover crop (common vetch, Vicia sativa) (CC-LSM); and short-season maize after a cereal crop (barley, Hordeum vulgare) (B-SSM) or after a leguminous crop (pea, Pisum sativum) (P-SSM).
View Article and Find Full Text PDFMicrobial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding.
View Article and Find Full Text PDFThe irrigation systems of the Ebro valley can lead to high NO emissions. The effects that crop diversification, such as double-cropping in combination with conservation tillage and different N fertilizer ratios, has on soil NO emissions have not been extensively studied in this region. The goal of this research was to measure NO soil emissions and determine the tillage practices and N fertilization rates that provide the lowest emissions when combined with double-cropping systems.
View Article and Find Full Text PDFTemperate grassland soils store significant amounts of carbon (C). Estimating how much livestock grazing and manuring can influence grassland soil organic carbon (SOC) is key to improve greenhouse gas grassland budgets. The Rothamsted Carbon (RothC) model, although originally developed and parameterized to model the turnover of organic C in arable topsoil, has been widely used, with varied success, to estimate SOC changes in grassland under different climates, soils, and management conditions.
View Article and Find Full Text PDFSimulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom.
View Article and Find Full Text PDFThere is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international '4p1000' initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky.
View Article and Find Full Text PDFSoil organic C (SOC) stock assessments at the regional scale under climate change scenarios are of paramount importance in implementing soil management practices to mitigate climate change. In this study, we estimated the changes in SOC sequestration under climate change conditions in agricultural land in Spain using the RothC model at the regional level. Four Intergovernmental Panel on Climate Change (IPCC) climate change scenarios (CGCM2-A2, CGCM2-B2, ECHAM4-A2, and ECHAM4-B2) were used to simulate SOC changes during the 2010 to 2100 period across a total surface area of 2.
View Article and Find Full Text PDFSoil organic carbon (SOC) management is key for soil fertility and for mitigation and adaptation to climate change, particularly in desertification-prone areas such as Mediterranean croplands. Industrialization and global change processes affect SOC dynamics in multiple, often opposing, ways. Here we present a detailed SOC balance in Spanish cropland from 1900 to 2008, as a model of a Mediterranean, industrialized agriculture.
View Article and Find Full Text PDFA portfolio of agricultural practices is now available that can contribute to reaching European mitigation targets. Among them, the management of agricultural soils has a large potential for reducing GHG emissions or sequestering carbon. Many of the practices are based on well tested agronomic and technical know-how, with proven benefits for farmers and the environment.
View Article and Find Full Text PDFDuring decades, in semiarid rainfed Aragon, intensive soil tillage and low crop residue input have led to the loss of soil structure and soil degradation. Conservation tillage and cropping intensification can improve soil structure in these areas. The objective of this study was to determine the influence of three different tillage systems (traditional tillage, reduced tillage and no-tillage) under two cropping systems (fallow-barley rotation and barley monoculture) on soil aggregation dynamics during a cropping season.
View Article and Find Full Text PDF