In the perception of color, wavelengths of light reflected off objects are transformed into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms. We report the discovery of neurons in the Drosophila optic lobe with hue-selective properties, which enables circuit-level analysis of color processing.
View Article and Find Full Text PDFA universal principle of sensory perception is the progressive transformation of sensory information from broad non-specific signals to stimulus-selective signals that form the basis of perception. To perceive color, our brains must transform the wavelengths of light reflected off objects into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms.
View Article and Find Full Text PDFKey Points: Basal forebrain long-range projections to the olfactory bulb are important for olfactory sensitivity and odour discrimination. Using optogenetics, it was confirmed that basal forebrain afferents mediate IPSCs on granule and deep short axon cells. It was also shown that they selectively innervate specific subtypes of periglomerular (PG) cells.
View Article and Find Full Text PDFCalretinin (CR)-expressing periglomerular (PG) cells are the most abundant interneurons in the glomerular layer of the olfactory bulb. They are predominately generated postnatally from the septal and dorsal subventricular zones that continue producing them well into adulthood. Yet, little is known about their properties and functions.
View Article and Find Full Text PDFThe activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.
View Article and Find Full Text PDFMinocycline, a tetracycline derivative, is known to exert neuroprotective effects unrelated to its antimicrobial action. In particular, minocycline prevents microglial activation in pathological conditions and consequently reduces the production of proinflammatory factors contributing to the propagation of diseases. Accumulative evidence indicates that microglial cells contribute to the maturation of neuronal and synaptic networks during the normal development of the central nervous system (CNS) and that perinatal inflammation is a known risk factor for brain lesions.
View Article and Find Full Text PDF