Publications by authors named "Alvaro S Hervella"

Objective: We assessed the predictive efficacy of automatically quantified retinal vascular tortuosity from the fundus pictures of patients with sickle cell disease (SCD) without evident retinopathy.

Methods: Retinal images were obtained from 31 healthy and 31 SCD participants using fundus imaging and analyzed using a novel computational automated metric assessment. The local and global vessel tortuosity and their relationship with systemic disease parameters were analyzed based on the images.

View Article and Find Full Text PDF

Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization of additional information from the available training samples.

View Article and Find Full Text PDF

Retinal vascular tortuosity is an excessive bending and twisting of the blood vessels in the retina that is associated with numerous health conditions. We propose a novel methodology for the automated assessment of the retinal vascular tortuosity from color fundus images. Our methodology takes into consideration several anatomical factors to weigh the importance of each individual blood vessel.

View Article and Find Full Text PDF

Multi-task learning is a promising paradigm to leverage task interrelations during the training of deep neural networks. A key challenge in the training of multi-task networks is to adequately balance the complementary supervisory signals of multiple tasks. In that regard, although several task-balancing approaches have been proposed, they are usually limited by the use of per-task weighting schemes and do not completely address the uneven contribution of the different tasks to the network training.

View Article and Find Full Text PDF

Background: Retinal imaging is widely used to diagnose many diseases, both systemic and eye-specific. In these cases, image registration, which is the process of aligning images taken from different viewpoints or moments in time, is fundamental to compare different images and to assess changes in their appearance, commonly caused by disease progression. Currently, the field of color fundus registration is dominated by classical methods, as deep learning alternatives have not shown sufficient improvement over classic methods to justify the added computational cost.

View Article and Find Full Text PDF

During the last years, deep learning techniques have emerged as powerful alternatives to solve biomedical image analysis problems. However, the training of deep neural networks usually needs great amounts of labeled data to be done effectively. This is even more critical in the case of biomedical imaging due to the added difficulty of obtaining data labeled by experienced clinicians.

View Article and Find Full Text PDF

Background And Objectives: Age-related macular degeneration (AMD) is a degenerative disorder affecting the macula, a key area of the retina for visual acuity. Nowadays, AMD is the most frequent cause of blindness in developed countries. Although some promising treatments have been proposed that effectively slow down its development, their effectiveness significantly diminishes in the advanced stages.

View Article and Find Full Text PDF

Diabetic retinopathy is an increasingly prevalent eye disorder that can lead to severe vision impairment. The severity grading of the disease using retinal images is key to provide an adequate treatment. However, in order to learn the diverse patterns and complex relations that are required for the grading, deep neural networks require very large annotated datasets that are not always available.

View Article and Find Full Text PDF

Medical imaging, and particularly retinal imaging, allows to accurately diagnose many eye pathologies as well as some systemic diseases such as hypertension or diabetes. Registering these images is crucial to correctly compare key structures, not only within patients, but also to contrast data with a model or among a population. Currently, this field is dominated by complex classical methods because the novel deep learning methods cannot compete yet in terms of results and commonly used methods are difficult to adapt to the retinal domain.

View Article and Find Full Text PDF

Background And Objectives: The study of the retinal vasculature represents a fundamental stage in the screening and diagnosis of many high-incidence diseases, both systemic and ophthalmic. A complete retinal vascular analysis requires the segmentation of the vascular tree along with the classification of the blood vessels into arteries and veins. Early automatic methods approach these complementary segmentation and classification tasks in two sequential stages.

View Article and Find Full Text PDF

Background And Objectives: The analysis of the retinal vasculature plays an important role in the diagnosis of many ocular and systemic diseases. In this context, the accurate detection of the vessel crossings and bifurcations is an important requirement for the automated extraction of relevant biomarkers. In that regard, we propose a novel approach that addresses the simultaneous detection of vessel crossings and bifurcations in eye fundus images.

View Article and Find Full Text PDF