The alignment among three or more nucleotides/amino acids sequences at the same time is known as multiple sequence alignment (MSA), a nondeterministic polynomial time (NP)-hard optimization problem. The time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In this work, we deal with a multiobjective version of the MSA problem wherein the goal is to simultaneously optimize the accuracy and conservation of the alignment.
View Article and Find Full Text PDFThe alignment of three or more protein or nucleotide sequences is known as Multiple Sequence Alignment problem. The complexity of this problem increases exponentially with the number of sequences; therefore, many of the current approaches published in the literature suffer a computational overhead when thousands of sequences are required to be aligned. We introduce a new approach for dealing with ultra-large sets of sequences.
View Article and Find Full Text PDFThe multiple sequence alignment is a well-known bioinformatics problem that consists in the alignment of three or more biological sequences (protein or nucleic acid). In the literature, a number of tools have been proposed for dealing with this biological sequence alignment problem, such as progressive methods, consistency-based methods, or iterative methods; among others. These aligners often use a default parameter configuration for all the input sequences to align.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2016
Proteins are molecules that form the mass of living beings. These proteins exist in dissociated forms like amino-acids and carry out various biological functions, in fact, almost all body reactions occur with the participation of proteins. This is one of the reasons why the analysis of proteins has become a major issue in biology.
View Article and Find Full Text PDF