Heavy crude oil processing presents significant challenges owing to its complex composition and requirement for processing conditions, which increase the process safety risk in crude processing units, such as fixed equipment, for instance pressure vessels and pipes. The aim of this work is to evaluate the influence of heavy crude oils named A and B and the effect of sulfur-rich compounds and organic acids on the performance at high temperatures of three metallic alloys (5Cr-1/2Mo/ASTM A335GP5, X6CrNiMoTi17122/AISI-SAE 316Ti and Ni66.5Cu31.
View Article and Find Full Text PDF3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers.
View Article and Find Full Text PDFThis paper investigates the effect that the selection of the die material generates on the extrusion process of bimetallic cylindrical billets combining a magnesium alloy core (AZ31B) and a titanium alloy sleeve (Ti6Al4V) of interest in aeronautical applications. A robust finite element model is developed to analyze the variation in the extrusion force, damage distribution, and wear using different die materials. The results show that die material is a key factor to be taken into account in multi-material extrusion processes.
View Article and Find Full Text PDFDuring their useful life, polymers are subject to degradation processes due to exposure to specific environmental conditions over long times. These processes generally lead to changes, almost always irreversible, of properties and performances of polymers, changes which would be useful to be able to predict in advance. To meet this need, numerous investigations have been focused on the possibility to predict the long-term performance of polymers, if exposed to specific environments, by the so called "accelerated aging" tests.
View Article and Find Full Text PDFThe degradation of polymeric components is of considerable interest to the nuclear industry and its regulatory bodies. The objective of this work was the development of a methodology to determine the useful life-based on the storage temperature-of acrylonitrile O-rings used as mechanical sealing elements to prevent leakages in nuclear equipment. To this aim, a reliability-based approach that allows prediction of the use-suitability of different storage scenarios (that involve different storage times and temperatures) considering the further required in-service performance, is presented.
View Article and Find Full Text PDFWe set a shortcut-to-adiabaticity strategy to design the trolley motion in a double-pendulum bridge crane. The trajectories found guarantee payload transport without residual excitation regardless of the initial conditions within the small oscillations regime. The results are compared with exact dynamics to set the working domain of the approach.
View Article and Find Full Text PDFIn metal forming, the plastic behavior of metallic alloys is directly related to their formability, and it has been traditionally characterized by simplified models of the flow curves, especially in the analysis by finite element simulation and analytical methods. Tools based on artificial neural networks have shown high potential for predicting the behavior and properties of industrial components. Aluminum alloys are among the most broadly used materials in challenging industries such as aerospace, automotive, or food packaging.
View Article and Find Full Text PDFA reliability engineering program must be implemented from the conceptual phase of the physical asset to define the performance requirements of the components and equipment. Thus, in this work, the aim is to find the most optimal solution to manufacture polymer-based parts for the nuclear power industry using additive manufacturing routes. This case study application has been selected because polymers processed by additive manufacturing (AM) can be well suited for nuclear applications.
View Article and Find Full Text PDFThis paper investigates the upsetting of bimetallic cylinders with an aluminum alloy center and a brass ring. The influence of the center-ring shape factor and type of assembly fit (interference and clearance), and the effect of friction on the compression force and ductile damage are comprehensively analyzed by means of a combined numerical-experimental approach. Results showed that the higher the shape factor, the lower the forces required, whereas the effect of friction is especially important for cylinders with the lowest shape factors.
View Article and Find Full Text PDFOne of the challenges in additive manufacturing (AM) of metallic materials is to obtain workpieces free of defects with excellent physical, mechanical, and metallurgical properties. In wire and arc additive manufacturing (WAAM) the influences of process conditions on thermal history, microstructure and resultant mechanical and surface properties of parts must be analyzed. In this work, 3D metallic parts of mild steel wire (American Welding Society-AWS ER70S-6) are built with a WAAM process by depositing layers of material on a substrate of a S235 JR steel sheet of 3 mm thickness under different process conditions, using as welding process the gas metal arc welding (GMAW) with cold metal transfer (CMT) technology, combined with a positioning system such as a computer numerical controlled (CNC) milling machine.
View Article and Find Full Text PDF