Lanthanum strontium ferrite (LaSrAgFeO = 0; LSFO) and its silver-doped derivative (LaSrAgFeO = 0.05; LASFO) are synthesized using mild conditions by a sol-gel method. Both oxides present a perovskite-like structure with orthorhombic symmetry due to octahedral tilting; thus, the incorporation of silver in the A-site does not significantly modify the perovskite structure.
View Article and Find Full Text PDFIn the pursuit of enhancing cancer treatment efficacy while minimizing side effects, near-infrared (NIR) photothermal therapy (PTT) has emerged as a promising approach. By using photothermally active nanomaterials, PTT enables localized hyperthermia, effectively eliminating cancer cells with minimal invasiveness and toxicity. Among these nanomaterials, gold nanostars (AuNS) stand out due to their tunable plasmon resonance and efficient light absorption.
View Article and Find Full Text PDFIn this work, the structure of Zn acetate has been determined by a combination of X-ray absorption fine structure and Raman spectroscopy. We have analyzed the local atomic environment and the main vibrational bands of the acetate and Zn acetate at different pH. The results suggest that Zn acetate complex acquires a bidentate structure that modifies its first coordination shell.
View Article and Find Full Text PDFTemperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues.
View Article and Find Full Text PDFThis work present structural, morphological, magnetic, and electrical properties of GaSb/Mn multilayer deposited via DC magnetron sputtering at room temperature and at 423 K. The samples are characterized by forming layers of 3, 6 and 12 periods of the GaSb/Mn structure. Through XRD patterns, it was possible to stablish the formation of GaSb, MnGa, and MnSb phases.
View Article and Find Full Text PDFNanoparticle-mediated thermal treatments have demonstrated high efficacy and versatility as a local anticancer strategy beyond traditional global hyperthermia. Nanoparticles act as heating generators that can trigger therapeutic responses at both the cell and tissue level. In some cases, treatment happens in the absence of a global temperature rise, damaging the tumor cells even more selectively than other nanotherapeutic strategies.
View Article and Find Full Text PDFProgress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions.
View Article and Find Full Text PDFMaterials with the formula Sr CoNb Ti O (x=1.00, 0.70; δ=number of oxygen vacancies) present a cubic perovskite-like structure.
View Article and Find Full Text PDFThe in situ study of the discharge process in a zinc-based half-cell employing a porous electrode as a structural scaffold is reported. The in situ characterization has been performed by synchrotron X-ray absorption fine-structure spectroscopy and, for this purpose, an inexpensive, simple and versatile electrochemical cell compatible with X-ray experiments has been designed and described. The experimental results reported here have been employed to semi-quantify the dissolved and undissolved zinc species during the discharge, allowing the cell feasibility to be tested and to better understand the functioning of the zinc half-cell based on porous electrodes.
View Article and Find Full Text PDFPorous silicon (PSi) is a versatile matrix with tailorable surface reactivity, which allows the processing of a range of multifunctional films and particles. The biomedical applications of PSi often require a surface capping with organic functionalities. This work shows that visible light can be used to catalyze the assembly of organosilanes on the PSi, as demonstrated with two organosilanes: aminopropyl-triethoxy-silane and perfluorodecyl-triethoxy-silane.
View Article and Find Full Text PDFThe perovskite series Sr CoNb Ti O (0≤x≤1) was investigated in the full compositional range to assess its potential as cathode material for solid oxide fuel cell (SOFC). The variation of transport properties and thus, the area specific resistances (ASR) are explained by a detailed investigation of the defect chemistry. Increasing the titanium content from x=0-1 produces both oxidation of Co to Co (from 0 up to 40 %) and oxygen vacancies (from 6.
View Article and Find Full Text PDFThe symmetry of the room-temperature (RT) structure of title compounds LaSrCoTiO changes with x, from P2/n (0 ≤ x ≤ 0.2) to Pnma (0.3 ≤ x ≤ 0.
View Article and Find Full Text PDFFor over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids.
View Article and Find Full Text PDFA novel set-up has been designed and used for synchrotron radiation X-ray high-resolution powder diffraction (SR-HRPD) in transmission geometry (spinning capillary) for in situ solid-gas reactions and processes in an isobaric and isothermal environment. The pressure and temperature of the sample are controlled from 10(-3) to 1000 mbar and from 80 to 1000 K, respectively. To test the capacities of this novel experimental set-up, structure deformation in the porous material zeolitic imidazole framework (ZIF-8) by gas adsorption at cryogenic temperature has been studied under isothermal and isobaric conditions.
View Article and Find Full Text PDFExpert Opin Drug Deliv
August 2014
Introduction: The particular properties of nanostructured porous silicon (nanoPS) make it an attractive material for controlled and localized release of therapeutics within the body, aiming at increased efficacy and reduced risks of potential side effects. Since this is a rapidly evolving field as a consequence of the number of research groups involved, a critical review of the state of the art is necessary.
Areas Covered: In this work, the most promising and successful applications of nanoPS in the field of drug delivery are reviewed and discussed.
In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM).
View Article and Find Full Text PDFThe localized irradiation of Si allows a precise patterning at the microscale of nanostructured materials such as porous silicon (PS). PS patterns with precisely defined geometries can be fabricated using ion stopping masks. The nanoscale textured micropatterns were used to explore their influence as microenvironments for human mesenchymal stem cells (hMSCs).
View Article and Find Full Text PDFThe surface properties of porous silicon (PSi) evolve rapidly in phosphate-buffered saline. X-ray photoelectron spectra indicate the formation of a Si-OH and C-O enriched surface, which becomes increasingly hydrophilic with aging time. Multiscale stripe micropatterns of Si and PSi have been fabricated by means of a high-energy ion-beam irradiation process.
View Article and Find Full Text PDFThe engineering of surface patterns is a powerful tool for analyzing cellular communication factors involved in the processes of adhesion, migration, and expansion, which can have a notable impact on therapeutic applications including tissue engineering. In this regard, the main objective of this research was to fabricate patterned and textured surfaces at micron- and nanoscale levels, respectively, with very different chemical and topographic characteristics to control cell-substrate interactions. For this task, one-dimensional (1-D) and two-dimensional (2-D) patterns combining silicon and nanostructured porous silicon were engineered by ion beam irradiation and subsequent electrochemical etch.
View Article and Find Full Text PDFIn the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches.
View Article and Find Full Text PDFElectrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon.
View Article and Find Full Text PDFThis work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character.
View Article and Find Full Text PDF