Transcriptomic profiling of blood immune cells offers a promising alternative to invasive, sampling bias-prone tissue-based biomarker assays for predicting immune checkpoint inhibitor (ICI) therapy response in non-small cell lung cancer (NSCLC) patients. However, the optimal analytical approach to identify systemic correlates of response still needs to be explored. We collected peripheral blood mononuclear cells and whole blood (WB) samples from 33 ICI-treated NSCLC patients before ICI treatment and at the first response evaluation.
View Article and Find Full Text PDFThe use of immune checkpoint inhibitors (ICIs) continues to transform the therapeutic landscape of non-small cell lung cancer (NSCLC), with these drugs now being evaluated at every stage of the disease. In contrast to these advances, little progress has been made with respect to reliable predictive biomarkers that can inform clinicians on therapeutic efficacy. All current biomarkers for outcome prediction, including PD-L1, tumor mutational burden or complex immune gene expression signatures, require access to tumor tissue.
View Article and Find Full Text PDFBackground: RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limitation of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against highly abundant - and sometimes non-informative - RNA species.
View Article and Find Full Text PDF