Publications by authors named "Alvaro M Toledo"

Co-existing disordered and ordered (raft) membrane domains exist in Borrelia burgdorferi, the causative agent of Lyme disease. However, although B. burgdorferi contains cholesterol lipids, it lacks sphingolipids-a crucial component of rafts in eukaryotes.

View Article and Find Full Text PDF

The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms.

View Article and Find Full Text PDF

Borrelia burgdorferi, the spirochaetal agent of Lyme disease, codes for a single HtrA protein, HtrABb (BB0104) that is homologous to DegP of Escherichia coli (41% amino acid identity). HtrABb shows physical and biochemical similarities to DegP in that it has the trimer as its fundamental unit and can degrade casein via its catalytic serine. Recombinant HtrABb exhibits proteolytic activity in vitro, while a mutant (HtrABbS198A) does not.

View Article and Find Full Text PDF

Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B.

View Article and Find Full Text PDF