The polyaddition between dicyclic carbonates and diamines leading to poly(hydroxy urethane)s (PHUs) has emerged as the preferred method for the synthesis of green, non-isocyanate polyurethanes. However, when proposed for use as structural adhesives, the long times for completion of aminolysis of the 5-membered cyclic carbonates under ambient conditions force the use of complementary chemistries to accelerate the curing process. In this work, a system that combines an amino-terminated PHU (NH-PHU-NH), an epoxy resin, and a thiol compound was employed to develop high-shear strength PHU-epoxy hybrid adhesives able to cure at room temperature in short times.
View Article and Find Full Text PDFPoly(hydroxy urethane)s (PHUs) based on 5-membered cyclic carbonates have emerged as sustainable alternatives to conventional isocyanate-based polyurethanes. However, while from the point of view of sustainability they represent an improvement, their properties are still not competitive with conventional polyurethanes. In this work, the potential of PHUs as reversible hot-melt adhesives is discussed.
View Article and Find Full Text PDFPolyurethane (PU) adhesives and coatings are widely used to fabricate high-quality materials due to their excellent properties and their versatile nature, which stems from the wide range of commercially available polyisocyanate and polyol precursors. This polymer family has traditionally been used in a wide range of adhesive applications including the bonding of footwear soles, bonding of wood (flooring) to concrete (subflooring), in the automotive industry for adhering different car parts, and in rotor blades, in which large surfaces are required to be adhered. Moreover, PUs are also frequently applied as coatings/paints for automotive finishes and can be applied over a wide range of substrates such as wood, metal, plastic, and textiles.
View Article and Find Full Text PDFThe transition towards safer and more sustainable production of polymers has led to a growing body of academic research into non-isocyanate polyurethanes (NIPUs) as potential replacements for conventional, isocyanate-based polyurethane materials. This perspective article focuses on the opportunities and current limitations of NIPUs produced by the reaction between biobased cyclic carbonates with amines, which offers an interesting pathway to renewable NIPUs. While it was initially thought that due to the similarities in the chemical structure, NIPUs could be used to directly replace conventional polyurethanes (PU), this has proven to be more challenging to achieve in practice.
View Article and Find Full Text PDFPlasma-induced free-radical polymerizations rely on the formation of radical species to initiate polymerization, leading to some extent of monomer fragmentation. In this work, the plasma-induced polymerization of an allyl ether-substituted six-membered cyclic carbonate (A6CC) is demonstrated and emphasizes the retention of the cyclic carbonate moieties. Taking advantage of the low polymerization tendency of allyl monomers, the characterization of the oligomeric species is studied to obtain insights into the effect of plasma exposure on inducing free-radical polymerization.
View Article and Find Full Text PDFBio-based plastics that can supplant petroleum-derived materials are necessary to meet the future demands of sustainability in the life cycle of plastic materials. While there are significant efforts to develop protein-based plastic materials for commercial use, their application is limited by poor processability and limitations in mechanical performance. Here, we present a bovine serum albumin (BSA)-based resin for stereolithographic apparatus (SLA) 3D printing that affords bioplastic objects with shape-memory behavior.
View Article and Find Full Text PDFThe preparation of non-isocyanate polyurethanes (NIPUs) by polyaddition of (poly)cyclic carbonates to (poly)amines represents one of the most optimistic alternatives for replacing conventional polyurethanes prepared by the toxic isocyanate chemistry. However, the limited reactivity of conventional five membered cyclic carbonates even in the presence of catalysts restricts their industrial implementation. One way to mitigate this lack of reactivity is to combine with other chemistries to create hybrid-NIPUs with superior performance.
View Article and Find Full Text PDF