This paper describes the scientific achievements of a collaboration between a research group and the waste management division of a company. While these results might be the basis for several practical or commercial developments, we here focus on a novel scientific contribution: a methodology to automatically generate geo-located waste container maps. It is based on the use of Computer Vision algorithms to detect waste containers and identify their geographic location and dimensions.
View Article and Find Full Text PDFApplying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by frame people detectors during runtime classification, without requiring any additional manually labeled ground truth apart from the offline training of the detection model. Such adaptation make use of multiple detectors mutual information, i.
View Article and Find Full Text PDFFinding optimal parametrizations for people detectors is a complicated task due to the large number of parameters and the high variability of application scenarios. In this paper, we propose a framework to adapt and improve any detector automatically in multi-camera scenarios where people are observed from various viewpoints. By accurately transferring detector results between camera viewpoints and by self-correlating these transferred results, the best configuration (in this paper, the detection threshold) for each detector-viewpoint pair is identified online without requiring any additional manually-labeled ground truth apart from the offline training of the detection model.
View Article and Find Full Text PDF