Publications by authors named "Alvaro Garcia-Barragan"

Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models.

View Article and Find Full Text PDF

The wide adoption of electronic health records (EHRs) offers immense potential as a source of support for clinical research. However, previous studies focused on extracting only a limited set of medical concepts to support information extraction in the cancer domain for the Spanish language. Building on the success of deep learning for processing natural language texts, this paper proposes a transformer-based approach to extract named entities from breast cancer clinical notes written in Spanish and compares several language models.

View Article and Find Full Text PDF