Background: Several large trials have employed age or clinical features to select patients for atrial fibrillation (AF) screening to reduce strokes. We hypothesized that a machine learning (ML) model trained to predict AF risk from 12‑lead electrocardiogram (ECG) would be more efficient than criteria based on clinical variables in indicating a population for AF screening to potentially prevent AF-related stroke.
Methods: We retrospectively included all patients with clinical encounters in Geisinger without a prior history of AF.
Use of machine learning (ML) for automated annotation of heart structures from echocardiographic videos is an active research area, but understanding of comparative, generalizable performance among models is lacking. This study aimed to (1) assess the generalizability of five state-of-the-art ML-based echocardiography segmentation models within a large Geisinger clinical dataset, and (2) test the hypothesis that a quality control (QC) method based on segmentation uncertainty can further improve segmentation results. Five models were applied to 47,431 echocardiography studies that were independent from any training samples.
View Article and Find Full Text PDFMachine learning promises to assist physicians with predictions of mortality and of other future clinical events by learning complex patterns from historical data, such as longitudinal electronic health records. Here we show that a convolutional neural network trained on raw pixel data in 812,278 echocardiographic videos from 34,362 individuals provides superior predictions of one-year all-cause mortality. The model's predictions outperformed the widely used pooled cohort equations, the Seattle Heart Failure score (measured in an independent dataset of 2,404 patients with heart failure who underwent 3,384 echocardiograms), and a machine learning model involving 58 human-derived variables from echocardiograms and 100 clinical variables derived from electronic health records.
View Article and Find Full Text PDF