Cortical interneurons play an important role in mediating the juvenile critical period for ocular dominance plasticity in the mouse primary visual cortex. Previously, we showed that transplantation of cortical interneurons derived from the medial ganglionic eminence (MGE) opens a robust period of ocular dominance plasticity 33-35 days after transplantation into neonatal host visual cortex. The plasticity can be induced by transplanting either PV or SST MGE-derived cortical interneurons; it requires transplanted interneurons to express the vesicular GABAergic transporter; and it is manifested by changes to the host visual circuit.
View Article and Find Full Text PDFThe development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFShifts in host-associated microbiomes can impact both host and microbes. It is of interest to understand how perturbations, like the introduction of exogenous chemicals, impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.
View Article and Find Full Text PDFβ-Hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve the interconversion of BHB and primary energy intermediates. Here, we identify a previously undescribed BHB secondary metabolic pathway via CNDP2-dependent enzymatic conjugation of BHB and free amino acids.
View Article and Find Full Text PDFβ-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids.
View Article and Find Full Text PDFThe development of the human neocortex is a highly dynamic process and involves complex cellular trajectories controlled by cell-type-specific gene regulation. Here, we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFNeurogenesis and gliogenesis continue in the Ventricular-Subventricular Zone (V-SVZ) of the adult rodent brain. B1 cells are astroglial cells derived from radial glia that function as primary progenitors or neural stem cells (NSCs) in the V-SVZ. B1 cells, which have a small apical contact with the ventricle, decline in numbers during early postnatal life, yet neurogenesis continues into adulthood.
View Article and Find Full Text PDFCortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated.
View Article and Find Full Text PDFShifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense.
View Article and Find Full Text PDFAlkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified.
View Article and Find Full Text PDFThe temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs. The human EC continues to develop during childhood, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth.
View Article and Find Full Text PDFAstrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively.
View Article and Find Full Text PDFMesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons.
View Article and Find Full Text PDFThe molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways.
View Article and Find Full Text PDFEmbryonic neural stem cells (NSCs, , radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends.
View Article and Find Full Text PDFCortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins (), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice.
View Article and Find Full Text PDFThe ability to acquire chemical defenses through the diet has evolved across several major taxa. Chemically defended organisms may need to balance chemical defense acquisition and nutritional quality of prey items. However, these dietary preferences and potential trade-offs are rarely considered in the framework of diet-derived defenses.
View Article and Find Full Text PDFAmerican bullfrog () saxiphilin (Sxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (Nas). How specific Sxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition.
View Article and Find Full Text PDFInteractions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester.
View Article and Find Full Text PDFTerreros-Roncal . investigated the impacts of human neurodegeneration on immunostainings assumed to be associated with neurogenesis. However, the study provides no evidence that putative proliferating cells are linked to neurogenesis, that multipolar nestin astrocytes are progenitors, or that mature-looking doublecortin neurons are adult-born.
View Article and Find Full Text PDFPoison frogs bioaccumulate alkaloids for chemical defense from their arthropod diet. Although many alkaloids are accumulated without modification, some poison frog species can metabolize pumiliotoxin (PTX 251D) into the more potent allopumiliotoxin (aPTX 267A). Despite extensive research characterizing the chemical arsenal of poison frogs, the physiological mechanisms involved in the sequestration and metabolism of individual alkaloids remain unclear.
View Article and Find Full Text PDFThe human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE.
View Article and Find Full Text PDFThe cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences.
View Article and Find Full Text PDFDespite RNA's diverse secondary and tertiary structures and its complex conformational changes, nature utilizes a limited set of structural "motifs"-helices, junctions, and tertiary contact modules-to build diverse functional RNAs. Thus, in-depth descriptions of a relatively small universe of RNA motifs may lead to predictive models of RNA tertiary conformational landscapes. Motifs may have different properties depending on sequence and secondary structure, giving rise to subclasses that expand the universe of RNA building blocks.
View Article and Find Full Text PDF