Bacterial resistance to antibiotics has been rapidly increasing, resulting in low antibiotic effectiveness even treating common infections. The presence of resistant pathogens in environments such as a hospital Intensive Care Unit (ICU) exacerbates the critical admission-acquired infections. This work focuses on the prediction of antibiotic resistance in Pseudomonas aeruginosa nosocomial infections at the ICU, using Long Short-Term Memory (LSTM) artificial neural networks as the predictive method.
View Article and Find Full Text PDF