Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP).
View Article and Find Full Text PDFCoastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (), like those in New Bedford Harbor (NBH), Massachusetts, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
We introduce an approach to describe the long-time dynamics of multiatomic molecules by modulating the free energy landscape (FEL) to capture dominant features of the energy-barrier crossing dynamics of the all-atom (AA) system. Notably, we establish that the self-diffusion coefficient of coarse-grained (CG) systems can be accurately delineated by enhancing conservative force fields with high-frequency perturbations. Using theoretical arguments, we show that these perturbations do not alter the lower-order distribution functions, thereby preserving the structure of the AA system after coarse-graining.
View Article and Find Full Text PDFWater isotope separation, specifically separating heavy from light water, is a technologically important problem due to the usage of heavy water in applications such as nuclear magnetic resonance, nuclear power, and spectroscopy. Separation of heavy water from light water is difficult due to very similar physical and chemical properties between the isotopes. We show that a catalytically active ultrathin membrane (, a nanopore in MoS) can enable chemical exchange processes and physicochemical mechanisms that lead to efficient separation of deuterium from hydrogen.
View Article and Find Full Text PDFUnlabelled: Microplastics (MPs) have been found in a diverse range of organisms across trophic levels. While a majority of the information on organismal exposure to plastics in the environment comes from gastrointestinal (GI) data, the prevalence of MP particles in other tissues is not well understood. Additionally, many studies have not been able to detect the smallest, most prevalent, MPs (1 µm - 5 mm) that are the most likely to distribute to tissues in the body.
View Article and Find Full Text PDFBecause of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum.
View Article and Find Full Text PDFFundamental studies of the dielectrics of confined water are critical to understand the ion transport across biological and synthetic nanochannels. The relevance of these fundamental studies, however, surmounts the difficulty of probing water's dielectric constant as a function of a fine variation in confinement. In this work, we explore the computational efficiency of machine learning potentials to derive the confinement effects on the dielectric constant, polarization, and dipole moment of water.
View Article and Find Full Text PDFFoundations of nanofluidics can enable advances in diverse applications such as water desalination, energy harvesting, and biological analysis. Dynamically manipulating nanofluidic properties, such as diffusion and friction, is an area of great scientific interest. Twisted bilayer graphene, particularly at the magic angle, has garnered attention for its unconventional superconductivity and correlated insulator behavior due to strong electronic correlations.
View Article and Find Full Text PDFWe demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains.
View Article and Find Full Text PDFElectrohydrodynamic ion transport has been studied in nanotubes, nanoslits, and nanopores to mimic the advanced functionalities of biological ion channels. However, probing how the intricate interplay between the electrical and mechanical interactions affects ion conduction in asymmetric nanoconduits presents further obstacles. Here, ion transport across a conical nanopore embedded in a polarizable membrane under an electric field and pressure is analyzed by numerically solving a continuum model based on the Poisson, Nernst-Planck, and Navier-Stokes equations.
View Article and Find Full Text PDFCarbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported.
View Article and Find Full Text PDFThe nanoscale organization of electrolyte solutions at interfaces is often described well by the electrical double-layer model. However, a recent study has shown that this model breaks down in solutions of LiClO in acetonitrile at a silica interface, because the interface imposes a strong structuring in the solvent that in turn determines the preferred locations of cations and anions. As a surprising consequence of this organisation, the effective surface potential changes from negative at low electrolyte concentration to positive at high electrolyte concentration.
View Article and Find Full Text PDFScalable fabrication of graphene nanoribbons with narrow band gaps has been a nontrivial challenge. Here, we have developed a simple approach to access narrow band gaps using hybrid edge structures. Bottom-up liquid-phase synthesis of bent = 6/8 armchair graphene nanoribbons (AGNRs) has been achieved in high efficiency through copolymerization between an -terphenyl monomer and a naphthalene-based monomer, followed by Scholl oxidation.
View Article and Find Full Text PDFMicroplastics and nanoplastics are found in marine biota across a wide range of trophic levels and environments. While a large portion of the information about plastic exposure comes from gastrointestinal (GI) data, the relevance of particle accumulation from an oral exposure compared with other types of exposure (e.g.
View Article and Find Full Text PDFSingle-layer membranes have emerged as promising candidates for applications requiring high transport rates due to their low resistance to molecular transport. Owing to their atomically thin structure, these membranes experience significant microscopic fluctuations, emphasizing the need to explore their impact on ion transport processes. In this study, we investigate the effects of membrane fluctuations on the elementary scaling behavior of ion conductance [Formula: see text] as a function of ion concentration [Formula: see text], represented as [Formula: see text], using molecular dynamics simulations.
View Article and Find Full Text PDFWe develop a deep learning-based algorithm, called DeepForce, to link ab initio physics with the continuum theory to predict concentration profiles of confined water. We show that the deep-learned forces can be used to predict the structural properties of water confined in a nanochannel with quantum scale accuracy by solving the continuum theory given by Nernst-Planck equation. The DeepForce model has an excellent predictive performance with a relative error less than 7.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2023
Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer.
View Article and Find Full Text PDFFour-dimensional scanning transmission electron microscopy (4D-STEM) has recently gained widespread attention for its ability to image atomic electric fields with sub-Ångstrom spatial resolution. These electric field maps represent the integrated effect of the nucleus, core electrons and valence electrons, and separating their contributions is non-trivial. In this paper, we utilized simultaneously acquired 4D-STEM center of mass (CoM) images and annular dark field (ADF) images to determine the projected electron charge density in monolayer MoS.
View Article and Find Full Text PDFEthanol is widely used as a precursor in products ranging from drugs to cosmetics. However, distillation of ethanol from aqueous solution is energy intensive and expensive. Here, we show that angstrom-sized nanopores with precisely controlled pore sizes can spontaneously remove water from ethanol-water mixtures through molecular sieving at room temperature and pressure.
View Article and Find Full Text PDFWater (HO) is of great societal importance, and there has been a significant amount of research on its fundamental properties and related physical phenomena. Deuterium dioxide (DO), known as heavy water, also draws much interest as an important medium for medical imaging, nuclear reactors, etc. Although many experimental studies on the fundamental properties of HO and DO have been conducted, they have been primarily limited to understanding the differences between HO and DO in the bulk state.
View Article and Find Full Text PDFIon transport is a fundamental mechanism in living systems that plays a role in cell proliferation, energy conversion, and maintaining homeostasis. This has inspired various nanofluidic applications such as electricity harvesting, molecular sensors, and molecular separation. Two dimensional (2D) nanoporous membranes are particularly promising for these applications due to their ultralow transport barriers.
View Article and Find Full Text PDFSunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity.
View Article and Find Full Text PDFClassical nanofluidic frameworks account for the confined fluid and ion transport under an electrostatic field at the solid-liquid interface, but the electronic property of the solid is often overlooked. Harvesting the interaction of the nanofluidic transport with the electron transport in solid requires a route effectively coupling ion and electron dynamics. Here we report a nanofluidic analogy of Coulomb drag for exploring the dynamic ion-electron interactions at the liquid-graphene interface.
View Article and Find Full Text PDF