Publications by authors named "Alun T Hughes"

Many biological systems have evolved circadian rhythms based on the daily cycles of daylight and darkness on Earth. Such rhythms are synchronised or entrained to 24-h cycles, predominantly by light, and disruption of the normal circadian rhythms has been linked to elevation of multiple health risks. The skin serves as a protective barrier to prevent microbial infection and maintain homoeostasis of the underlying tissue and the whole organism.

View Article and Find Full Text PDF

Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms.

View Article and Find Full Text PDF

Extending a normal 24 hours day by four hours is unexpectedly highly disruptive to daily rhythms in gene expression in the blood. Using a paradigm in which human subjects were exposed to a 28 hours day, Archer and colleagues show how this sleep-altering forced desynchrony protocol caused complex disruption to daily rhythms in distinct groups of genes. Such perturbations in the temporal organisation of the blood transcriptome arise quickly, and point to the fragile nature of coordinated genomic activity.

View Article and Find Full Text PDF

Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock.

View Article and Find Full Text PDF

Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression.

View Article and Find Full Text PDF

Background: In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo.

View Article and Find Full Text PDF

Vasoactive intestinal polypeptide and its receptor, VPAC(2), play important roles in the functioning of the brain's circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC(2) receptors (Vipr2(-/-)) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Here, we used real-time confocal imaging of a destabilized green fluorescent protein (GFP) reporter to track the expression of the core clock gene Per1 in live SCN-containing brain slices from wild-type (WT) and Vipr2(-/-) mice.

View Article and Find Full Text PDF

Vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP) acting via the VPAC2 receptor and BB2 receptors, respectively, are key signaling pathways in the suprachiasmatic nuclei (SCN) circadian clock. Transgenic mice lacking the VPAC2 receptor (Vipr2(-/-)) display a continuum of disrupted behavioral rhythms with only a minority capable of sustaining predictable cycles of rest and activity. However, electrical or molecular oscillations have not yet been detected in SCN cells from adult Vipr2(-/-) mice.

View Article and Find Full Text PDF

VIP acting via the VPAC(2) receptor is implicated as a key signaling pathway in the maintenance and resetting of the hypothalamic suprachiasmatic nuclei (SCN) circadian pacemaker; circadian rhythms in SCN clock gene expression and wheel-running behavior are abolished in mice lacking the VPAC(2) receptor (Vipr2(-/-)). Here, using immunohistochemical detection of pERK (phosphorylated extracellular signal-regulated kinases 1/2) and c-FOS, we tested whether the gating of photic input to the SCN is maintained in these apparently arrhythmic Vipr2(-/-) mice. Under light/dark and constant darkness, spontaneous expression of pERK and c-FOS in the wild-type mouse SCN was significantly elevated during subjective day compared with subjective night; no diurnal or circadian variation in pERK or c-FOS was detected in the SCN of Vipr2(-/-) mice.

View Article and Find Full Text PDF

In contrast to mammals, adult teleost fish exhibit an enormous capacity to replace damaged neurons with newly generated ones after injuries in the central nervous system. In the present study, the role of microglia/macrophages, identified by tomato lectin binding, was examined in this process of neuronal regeneration in the corpus cerebelli of the teleost fish Apteronotus leptorhynchus. In the intact corpus cerebelli, or after short survival times following application of a mechanical lesion to this cerebellar subdivision, microglia/macrophages were virtually absent.

View Article and Find Full Text PDF