Integrated approaches to testing and assessments (IATAs) have been proposed as a method to organise new approach methodologies in order to replace traditional animal testing for chemical safety assessments. To capture the mechanistic aspects of toxicity assessments, IATAs can be framed around the adverse outcome pathway (AOP) concept. To utilise AOPs fully in this context, a sufficient number of pathways need to be present to develop fit for purpose IATAs.
View Article and Find Full Text PDFThe traditional paradigm for safety assessment of chemicals for their carcinogenic potential to humans relies heavily on a battery of well-established genotoxicity tests, usually followed up by long-term, high-dose rodent studies. There are a variety of problems with this approach, not least that the rodent may not always be the best model to predict toxicity in humans. Consequently, new approach methodologies (NAMs) are being developed to replace or enhance predictions coming from the existing assays.
View Article and Find Full Text PDFThe development and application of (quantitative) structure-activity relationship ((Q)SAR) models for reproductive toxicology remains challenging, given the complexity of the endpoint and the risks associated with subsequent decision making. Adverse outcome pathways (AOPs) organise knowledge and provide context of model outputs, aiding risk assessors' decision making. Using aromatase as an example, we demonstrate how AOPs can be used to contextualise a variety of (Q)SAR approaches.
View Article and Find Full Text PDFAdverse outcome pathways have shown themselves to be useful ways of understanding and expressing knowledge about sequences of events that lead to adverse outcomes (AOs) such as toxicity. In this paper we use the building blocks of adverse outcome pathways-namely key events (KEs) and key event relationships-to construct networks which can be used to make predictions of the likelihood of AOs. The networks of KEs are augmented by data from and knowledge about assays as well as by structure activity relationship predictions linking chemical classes to the observation of KEs.
View Article and Find Full Text PDFThe identification of impurities with mutagenic potential is required for any potential pharmaceutical. The ICH M7 guidelines state that two complementary in silico toxicity prediction tools may be used to predict the mutagenic potential of pharmaceutical impurities. An expert review of the resulting in silico predictions is required, and numerous publications have been released to guide the expert review process.
View Article and Find Full Text PDFDermal contact with chemicals may lead to an inflammatory reaction known as allergic contact dermatitis. Consequently, it is important to assess new and existing chemicals for their skin sensitizing potential and to mitigate exposure accordingly. There is an urgent need to develop quantitative non-animal methods to better predict the potency of potential sensitizers, driven largely by European Union (EU) Regulation 1223/2009, which forbids the use of animal tests for cosmetic ingredients sold in the EU.
View Article and Find Full Text PDF