In humans and monkeys, face perception activates a distributed cortical network that includes extrastriate, limbic, and prefrontal regions. Within face-responsive regions, emotional faces evoke stronger responses than neutral faces ("valence effect"). We used fMRI and Dynamic Causal Modeling (DCM) to test the hypothesis that emotional faces differentially alter the functional coupling among face-responsive regions.
View Article and Find Full Text PDFCogn Neurosci
March 2011
The extent to which repetition suppression is modulated by expertise is currently unknown. We used event-related fMRI to test whether architecture students would respond faster to buildings and would exhibit stronger repetition suppression in the fusiform gyrus (FG) and parahippocampa cortex (PHC) than students from other disciplines. Behaviorally, we found shorter response latencies with target repetition in all subjects.
View Article and Find Full Text PDFFront Hum Neurosci
July 2011
Face perception in humans is mediated by activation in a network of brain areas. Conventional univariate fMRI data analysis has not localized differential responses to viewing male as compared with viewing female faces within this network. We tested whether we could detect neural response patterns specific to viewing male vs.
View Article and Find Full Text PDFWith the advent of functional brain imaging techniques and recent developments in the analysis of cortical connectivity, the focus of mental imagery studies has shifted from a semi-modular approach to an integrated cortical network perspective. Functional magnetic resonance imaging studies of visual imagery of faces and objects show that activation of content-specific representations stored in the ventral visual stream is top-down-modulated by parietal and frontal regions. Recent findings in patients with conscious awareness disorders reveal that mental imagery can be used to map patterns of residual cognitive function in their brain and to provide diagnostic and prognostic indicators.
View Article and Find Full Text PDFWith the advent of functional brain imaging techniques and recent developments in the analysis of cortical connectivity, the focus of mental imagery studies has shifted from a semi-modular approach to a more realistic, integrated, cortical networks perspective. Recent studies of visual imagery of faces and objects suggest that activation of content-specific representations stored in the ventral visual stream is top-down modulated by parietal and frontal regions. The relation of these findings to other cognitive functions is discussed, as well as their clinical implications for patients with impaired states of conscious awareness.
View Article and Find Full Text PDFTo the naïve observer, cubist paintings contain geometrical forms in which familiar objects are hardly recognizable, even in the presence of a meaningful title. We used fMRI to test whether a short training session about Cubism would facilitate object recognition in paintings by Picasso, Braque and Gris. Subjects, who had no formal art education, were presented with titled or untitled cubist paintings and scrambled images, and performed object recognition tasks.
View Article and Find Full Text PDFFront Syst Neurosci
July 2011
We used event-related fMRI to investigate whether recollection- and familiarity-based memory judgments are modulated by the degree of visual similarity between old and new art paintings. Subjects performed a flower detection task, followed by a Remember/Know/New surprise memory test. The old paintings were randomly presented with new paintings, which were either visually similar or visually different.
View Article and Find Full Text PDFFace perception elicits activation within a distributed cortical network in the human brain. The network includes visual ("core") regions, which process invariant facial features, as well as limbic and prefrontal ("extended") regions that process changeable aspects of faces. Analysis of effective connectivity reveals that the major entry node in the "face network" is the lateral fusiform gyrus and that the functional coupling between the core and the extended systems is content-dependent.
View Article and Find Full Text PDFThe parahippocampal cortex (PHC) has been traditionally implicated both in place processing and in episodic memory. How could the same cortical region mediate these cognitive functions that seem quite different? We have recently proposed that the PHC should be seen as more generally mediating contextual associative processing, which is required for both navigation and memory. We therefore predicted that any associative objects should activate the PHC.
View Article and Find Full Text PDFThe sharing of primary data in the field of neuroscience has received considerable scrutiny from scientific societies and from science journals. Many see this as value added for science publishing that can enhance and inform secondary examination of data and results. Still others worry that data sharing is an undue burden for researchers with little long term value to science.
View Article and Find Full Text PDFIndeterminate art invokes a perceptual dilemma in which apparently detailed and vivid images resist identification. We used event-related fMRI to study visual perception of representational, indeterminate and abstract paintings. We hypothesized increased activation along a gradient of posterior-to-anterior ventral visual areas with increased object resolution, and postulated that object resolution would be associated with visual imagery.
View Article and Find Full Text PDFIndeterminate art, in which familiar objects are only suggestive, invokes a perceptual conundrum as apparently detailed and vivid images resist identification. We hypothesized that compared with paintings that depict meaningful content, object recognition in indeterminate images would be delayed, and tested whether aesthetic affect depends on meaningful content. Subjects performed object recognition and judgment of aesthetic affect tasks.
View Article and Find Full Text PDFFace perception elicits activation within a distributed cortical network in the human brain. The network includes visual ("core") regions, as well as limbic and prefrontal ("extended") regions, which process invariant facial features and changeable aspects of faces, respectively. We used functional Magnetic Resonance Imaging and Dynamic Causal Modeling to investigate effective connectivity and functional organization between and within the core and the extended systems.
View Article and Find Full Text PDFWe used event-related fMRI to study recognition memory of newly learned faces. Caucasian subjects memorized unfamiliar, neutral and happy South Korean faces and 4 days later performed a memory retrieval task in the MR scanner. We predicted that previously seen faces would be recognized faster and more accurately and would elicit stronger neural activation than novel faces.
View Article and Find Full Text PDFSingle-unit recordings and functional brain imaging studies have shown reduced neural responses to repeated stimuli in the visual cortex. Using MEG, we compared responses evoked by repetitions of neutral faces to those evoked by fearful faces, which were either task relevant (targets) or irrelevant (distracters). Faces evoked a bi-phasic response in extrastriate cortex, peaking at 160-185 ms and at 220-250 ms, with stronger responses to neutral faces at the earlier interval and stronger responses to fearful faces at the later interval.
View Article and Find Full Text PDFFace perception is mediated by a distributed neural system in the human brain. Attention, memory and emotion modulate the neural activation evoked by faces, however the effects of gender and sexual orientation are currently unknown. To test whether subjects would respond more to their sexually-preferred faces, we scanned 40 hetero- and homosexual men and women whilst they assessed facial attractiveness.
View Article and Find Full Text PDFWe used event-related fMRI to test whether recognition memory depends on visual similarity between familiar prototypes and novel exemplars. Subjects memorized portraits, landscapes, and abstract compositions by six painters with a unique style, and later performed a memory recognition task. The prototypes were presented with new exemplars that were either visually similar or dissimilar.
View Article and Find Full Text PDFFace perception is mediated by a distributed neural system in the human brain . The response to faces is modulated by cognitive factors such as attention, visual imagery, and emotion ; however, the effects of gender and sexual orientation are currently unknown. We used fMRI to test whether subjects would respond more to their sexually preferred faces and predicted such modulation in the reward circuitry.
View Article and Find Full Text PDFThe neural system associated with face perception in the human brain was investigated using functional magnetic resonance imaging (fMRI). In contrast to many studies that focused on discreet face-responsive regions, the objective of the current study was to demonstrate that regardless of stimulus format, emotional valence, or task demands, face perception evokes activation in a distributed cortical network. Subjects viewed various stimuli (line drawings of unfamiliar faces and photographs of unfamiliar, famous, and emotional faces) and their phase scrambled versions.
View Article and Find Full Text PDFIn this study, we compared fMRI activation measured with gradient- and spin-echo-based fMRI during visual perception of faces, which is mediated by neural activation within a distributed cortical network. With both fMRI techniques, bilateral activation was observed in multiple regions including the inferior occipital gyrus, fusiform gyrus, superior temporal sulcus, amygdala, inferior frontal gyrus, and orbitofrontal cortex. When compared with the gradient-echo sequence, activation measured with the spin-echo sequence was significantly reduced.
View Article and Find Full Text PDFSingle-unit recordings and functional brain imaging studies have shown reduced neural responses to repeated stimuli in the visual cortex. By using event-related functional MRI, we compared the activation evoked by repetitions of neutral and fearful faces, which were either task relevant (targets) or irrelevant (distracters). We found that within the inferior occipital gyri, lateral fusiform gyri, superior temporal sulci, amygdala, and the inferior frontal gyri/insula, targets evoked stronger responses than distracters and their repetition was associated with significantly reduced responses.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) studies have identified category-selective regions in ventral occipito-temporal cortex that respond preferentially to faces and other objects. The extent to which these patterns of activation are modulated by bottom-up or top-down mechanisms is currently unknown. We combined fMRI and dynamic causal modelling to investigate neuronal interactions between occipito-temporal, parietal and frontal regions, during visual perception and visual imagery of faces, houses and chairs.
View Article and Find Full Text PDFComplex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously.
View Article and Find Full Text PDF