Publications by authors named "Altucci L"

Aims: Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses.

View Article and Find Full Text PDF

Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics.

View Article and Find Full Text PDF

Epigenetic changes regulate gene expression through histone modifications, chromatin remodeling, and protein translation of these modifications. The PRC1 and PRC2 complexes shape gene repression via histone modifications. Specifically, the CBX protein family aids PRC1 recruitment to chromatin, impacting the progressive multistep process driving chromatin silencing.

View Article and Find Full Text PDF

Gene expression is an intricate biological process that bridges gap between the genotype and the phenotype. Canonical and hereditable epigenetic mechanisms, such as histone and DNA modifications, regulate the release of genetic information encoded in DNA without altering the underlying sequence. Many other non-canonical players, such as chromatin regulators and noncoding RNAs, are also involved in regulating gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer-secreted extracellular vesicles (EVs) induce a unique type of mesenchymal stem cells (iMSCs) that contribute to therapy resistance in bone cancers like osteosarcoma and multiple myeloma.
  • EVs alter the MSC transcriptome and drive the development of iMSCs, which can eliminate the benefits of therapies aimed at reducing metastasis.
  • Targeting EV-induced pathways with a combination of drugs has shown promise in overcoming iMSC-induced resistance, providing potential strategies to enhance treatment effectiveness in patients.
View Article and Find Full Text PDF

The present study describes a small library of peptides derived from a potent and selective CXCR4 antagonist (3), wherein the native disulfide bond is replaced using a side-chain to tail macrolactamization technique to vary ring size and amino acid composition. The peptides were preliminary assessed for their ability to interfere with the interaction between the receptor and anti-CXCR4 PE-conjugated antibody clone 12G5. Two promising candidates (13 and 17) were identified and further evaluated in aI-CXCL12 competition binding assay, exhibiting IC in the low-nanomolar range.

View Article and Find Full Text PDF

Background: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * Among the leukemias, acute myeloid leukemia (AML) is highly aggressive with poor survival rates, especially in patients with specific gene mutations, while hairy cell leukemia (HCL) remains rare and untreated with approved drugs.
  • * New epigenetic therapies, particularly histone deacetylase (HDAC) inhibitors, show promise in targeting blood cancers, with new hydroxamic acid derivatives demonstrating effectiveness in inducing cell death and improving outcomes in models of AML and other blood cancers.
View Article and Find Full Text PDF

Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N-methyladenosine (mA) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the mA system, has shown a dramatic impact on cancer development. However, the cellular localization of mA proteins inside tumor cells has been little studied so far.

View Article and Find Full Text PDF

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p).

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma.

View Article and Find Full Text PDF

Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression.

View Article and Find Full Text PDF

Background: Hormone receptor-positive tumors are unlikely to exhibit a complete pathological tumor response. The association of CDK 4/6 inhibitor plus hormone therapy has changed this perspective.

Case Presentation: In this study, we retrospectively reviewed the charts of patients with a diagnosis of luminal A/B advanced/metastatic tumors treated with a CDK 4/6 inhibitor-based therapy.

View Article and Find Full Text PDF

In this work, a 3D-printed plasmonic chip based on a silver-gold bilayer was developed in order to enhance the optical response of the surface plasmon resonance (SPR) probe. More specifically, numerical and experimental results were obtained on the 3D-printed SPR platform based on a silver-gold bilayer. Then, the optimized probe's gold plasmonic interface was functionalized with a specific antibody directed against the p27 protein (p27), an important cell cycle regulator.

View Article and Find Full Text PDF

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division.

View Article and Find Full Text PDF
Article Synopsis
  • Doxorubicin (DOX), a cancer treatment, causes cardiotoxicity, with early signs showing as diastolic dysfunction and fibrosis.
  • Researchers found that cardiac fibroblasts (CFs) become activated soon after DOX treatment, leading to increased metabolic activity and a shift towards glycolytic energy production.
  • The changes in CFs are linked to myofibroblast differentiation and pro-fibrotic signaling, suggesting that targeting these early CF responses could help mitigate the heart damage caused by anthracycline drugs like DOX.
View Article and Find Full Text PDF

Background: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors.

View Article and Find Full Text PDF