Publications by authors named "Altemeier W"

Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages.

View Article and Find Full Text PDF

Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages.

View Article and Find Full Text PDF

Background: Animal models of respiratory viral infections are essential for investigating disease pathogenesis and the efficacy of antivirals and vaccine candidates. A major limitation in the research of respiratory diseases in animal models is correlating clinically relevant changes in pulmonary physiology with cellular and molecular mechanistic studies. Few animal models have captured and correlated physiologic changes in lung function and immune response within same experiment, which is critical given the heterogeneous nature of lung disease due to viral infections.

View Article and Find Full Text PDF

The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection.

View Article and Find Full Text PDF

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFβ) signaling in human cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Innate immune cell populations play a vital role in asthma, with unique functions depending on their location in the body, prompting research on their distribution in mouse models.
  • This study used intravascular (IV) labeling to differentiate between innate immune cells in the bloodstream and those in lung tissue or airway fluid in two asthma models.
  • Results showed that IV labeled leukocytes did not interfere with bronchoalveolar lavage analysis, and excluding them improved the assessment accuracy of myeloid cells in lung tissue, enhancing understanding of immune cell movement in asthma.
View Article and Find Full Text PDF

Studies of pulmonary inflammation require unique considerations due to the complex structure and composition of the lungs. The lungs have multiple compartments and diverse immune cell populations, with inherently high autofluorescence, and are involved in the host response to pulmonary pathogens. We describe a protocol that accounts for these factors through a novel combination of methodologies-in vivo compartmental analysis and spectral flow cytometry with a broad panel of antibodies.

View Article and Find Full Text PDF

Background: Disease molecular complexity requires high throughput workflows to map disease pathways through analysis of vast tissue repositories. Great progress has been made in tissue multiomics analytical technologies. To match the high throughput of these advanced analytical platforms, we have previously developed a multipurpose 96-well microplate sonicator, PIXUL, that can be used in multiple workflows to extract analytes from cultured cells and tissue fragments for various downstream molecular assays.

View Article and Find Full Text PDF

Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB ( = 11) and without EIB ( = 9).

View Article and Find Full Text PDF

Pericytes are microvascular mural cells that directly contact endothelial cells. They have long been recognized for their roles in vascular development and homeostasis, but more recently have been identified as key mediators of the host response to injury. In this context, pericytes possess a surprising degree of cellular plasticity, behaving dynamically when activated and potentially participating in a range of divergent host responses to injury.

View Article and Find Full Text PDF

Background: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses.

Objective: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection.

View Article and Find Full Text PDF

Unlabelled: Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak.

Objectives: To assess the role of ANGPTL4 in COVID-19-related outcomes.

View Article and Find Full Text PDF

Background: Subtypes of pulmonary arterial hypertension (PAH) differ in both fundamental disease features and clinical outcomes. Angiogenesis and inflammation represent disease features that may differ across subtypes and are of special interest in connective tissue disease-associated PAH (CTD-PAH). We compared inflammatory and angiogenic biomarker profiles across different etiologies of PAH and related them to clinical outcomes.

View Article and Find Full Text PDF

The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease.

View Article and Find Full Text PDF

Background: Von Willebrand factor (VWF) is classically associated with primary hemostasis and platelet-rich arterial thromboses, but recently has also been implicated in fibrin clotting and venous thrombosis. Direct interaction between fibrin and VWF may mediate these processes, although prior reports are conflicting.

Objectives: We combined two complementary platforms to characterize VWF-fibrin(ogen) interactions and identify their potential physiologic significance.

View Article and Find Full Text PDF

We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury.

View Article and Find Full Text PDF

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome.

View Article and Find Full Text PDF

Background: Eosinophils are implicated as effector cells in asthma, but the functional implications of the precise location of eosinophils in the airway wall is poorly understood. We aimed to quantify eosinophils in the different compartments of the airway wall and associate these findings with clinical features of asthma and markers of airway inflammation.

Methods: In this cross-sectional study, we utilised design-based stereology to accurately partition the numerical density of eosinophils in both the epithelial compartment and the subepithelial space (airway wall area below the basal lamina including the submucosa) in individuals with and without asthma and related these findings to airway hyperresponsiveness (AHR) and features of airway inflammation.

View Article and Find Full Text PDF

Versican, a chondroitin sulfate proteoglycan, is an essential component of the extracellular matrix (ECM) in inflammatory lung disease. Versican's potential as an immunomodulatory molecule makes it a promising therapeutic target for controlling host immune responses in the lungs. To establish changes to versican expression and accumulation during influenza A viral pneumonia, we document the temporal and spatial changes to versican mRNA and protein in concert with pulmonary inflammatory cell infiltration.

View Article and Find Full Text PDF

The Adverse Outcome Pathway (AOP) framework is serving as a basis to integrate new data streams in order to enhance the power of predictive toxicology. AOP development for engineered nanomaterials (ENM), including silver nanoparticles (AgNP), is currently lagging behind other chemicals of regulatory interest due to our limited understanding of the mechanism by which underlying genetics or diseases directly modify host response to AgNP exposures. This also highlights the importance of considering the Aggregate Exposure Pathway (AEP) framework, which precedes the AOP framework and outlines source to target site exposure.

View Article and Find Full Text PDF

We previously reported on the role of pericyte-like cells as functional sentinel immune cells in lung injury. However, much about the biological role of pericytes in lung injury remains unknown. Lung pericyte-like cells are well-positioned to sense disruption to the epithelial barrier and coordinate local inflammatory responses due to their anatomic niche within the alveoli.

View Article and Find Full Text PDF

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum ( = 18) and bronchoalveolar lavage (BAL) fluid ( = 11) were obtained before and after exercise challenge in asthmatic subjects.

View Article and Find Full Text PDF

Mice are a common animal model for the study of influenza virus A (IAV). IAV infection causes weight loss due to anorexia and dehydration, which can result in early removal of mice from a study when they reach a humane endpoint. To reduce the number of mice prematurely removed from an experiment, we assessed nutritional gel (NG) supplementation as a support strategy for mice infected with mouse-adapted Influenza A/Puerto Rico/8/34 (A/PR/8/34; H1N1) virus.

View Article and Find Full Text PDF