Publications by authors named "Altayeb Alshaikh"

Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival.

View Article and Find Full Text PDF

Purpose Of Review: The gut-kidney axis plays a critical role in oxalate homeostasis, and better understanding of oxalate transport regulatory mechanisms is essential for developing novel therapies.

Recent Findings: Oxalate potentially contributes to chronic kidney disease (CKD) progression, CKD - and end stage renal disease (ESRD)-associated cardiovascular diseases, polycystic kidney disease (PKD) progression, and/or poor renal allograft survival, emphasizing the need for plasma and urinary oxalate lowering therapies. One promising strategy would be to enhance the bowel's ability to secrete oxalate, which might be facilitated by the following findings.

View Article and Find Full Text PDF

Most kidney stones are composed of calcium oxalate, and small increases in urine oxalate enhance the stone risk. The mammalian intestine plays a crucial role in oxalate homeostasis, and we had recently reported that -derived factors stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells through PKA activation. We therefore evaluated whether intestinal oxalate transport is directly regulated by activation of the PKA signaling pathway.

View Article and Find Full Text PDF

Most kidney stones (KS) are composed of calcium oxalate and small increases in urine oxalate enhance the stone risk. Obesity is a risk factor for KS, and urinary oxalate excretion increases with increased body size. We previously established the obese ob/ob ( ob) mice as a model (3.

View Article and Find Full Text PDF

Most kidney stones (KS) are composed of calcium oxalate, and small increases in urine oxalate affect the stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 (PAT1) plays a crucial role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and related KS, reflecting the importance of understanding regulation of intestinal oxalate transport. We previously showed that ATP and UTP inhibit oxalate transport by human intestinal Caco2-BBE cells (C2).

View Article and Find Full Text PDF

Most kidney stones are composed of calcium oxalate, and minor changes in urine oxalate affect the stone risk. Obesity is a risk factor for kidney stones and a positive correlation of unknown etiology between increased body size, and elevated urinary oxalate excretion has been reported. Here, we used obese ob/ob (ob) mice to elucidate the pathogenesis of obesity-associated hyperoxaluria.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpkdgt7hm83bsn1gghs7rouqg929mmru4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once