Publications by authors named "Altaf S Kazi"

Surfactant protein A (SP-A) plays an important role in the maintenance of lung lipid homeostasis. Previously, an SP-A receptor, P63 (CKAP4), on type II pneumocyte plasma membranes (PM) was identified by chemical cross-linking techniques. An antibody to P63 blocked the specific binding of SP-A to pneumocytes and the ability of SP-A to regulate surfactant secretion.

View Article and Find Full Text PDF

We have recently described a putative receptor for lung surfactant protein-A (SP-A) on rat type II pneumocytes. The receptor, P63, is a 63-kDa type II transmembrane protein. Coincubation of type II cells with P63 antibody (Ab) reversed the inhibitory effect of SP-A on secretagogue-stimulated surfactant secretion from type II cells.

View Article and Find Full Text PDF

Receptor-mediated signaling is commonly associated with multiple functions, including the production of reactive oxygen species. However, whether mitochondrion-derived superoxide (mROS) contributes directly to physiological signaling is controversial. Here we demonstrate a previously unknown mechanism in which physiologic Ca(2+)-evoked mROS production plays a pivotal role in endothelial cell (EC) activation and leukocyte firm adhesion.

View Article and Find Full Text PDF

Surfactant protein A (SP-A) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpropionate) (DSP). Sulfo-SBED-biotinylated SP-A was cross-linked to the plasma membranes isolated from rat type II cells, and the biotin label was transferred from SP-A to its receptor by reduction.

View Article and Find Full Text PDF

In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells.

View Article and Find Full Text PDF