Publications by authors named "Alsu Kuznetsova"

Methane (CH) emissions are a factor in climate change; in addition, CH production may affect reclamation of fluid fine tailings (FFT) in tailings ponds, and end-pit lakes (EPLs). In laboratory cultures, we investigated the effect of crystalline iron mineral (magnetite) on CH production from the biodegradation of hydrocarbons added to FFT collected from methanogenically more and less active sites in a demonstration EPL. Magnetite enhanced CH production from both sites, having a greater effect in more active FFT, where it increased the CH production rate as much as 48% (from 6.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a contagious prion disease that affects cervids in North America, Northern Europe, and South Korea. CWD is spread through direct and indirect horizontal transmission, with both clinical and preclinical animals shedding CWD prions in saliva, urine, and feces. CWD particles can persist in the environment for years, and soils may pose a risk for transmission to susceptible animals.

View Article and Find Full Text PDF

Management of growing volumes of fluid fine tailings (FFT) is a significant challenge for oil sands industry. A potential alternative non-aqueous solvent extraction (NAE) process uses cycloalkane solvent such as cyclohexane or cyclopentane with very little water and generates smaller volumes of 'dry' solids (NAES) with residual solvent. Here we investigate remediation of NAES in a simulated bench-scale upland reclamation scenario.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy negatively impacting cervids on three continents. Soil can serve as a reservoir for horizontal transmission of CWD by interaction with the infectious prion protein (PrP) shed by diseased individuals and from infected carcasses. We investigated the pathways for PrP migration in soil profiles using lab-scale soil columns, comparing PrP migration through pure soil minerals (quartz, illite and montmorillonite), and diverse soils from boreal (Luvisol, Brunisol) and prairie (Chernozem) regions.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a geographically expanding, fatal neurodegenerative disease in cervids. The disease can be transmitted directly (animal-animal) or indirectly via infectious prions shed into the environment. The precise mechanisms of indirect CWD transmission are unclear but known sources of the infectious prions that contaminate the environment include saliva, urine and feces.

View Article and Find Full Text PDF

A wide variety of sampling techniques and strategies are needed to analyze polycyclic aromatic compounds (PACs) and interpret their distributions in various environmental media (i.e., air, water, snow, soils, sediments, peat and biological material).

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a contagious prion disease of cervids. The infectious agent is shed from animals at the preclinical and clinical stages of disease where it persists in the environment as a reservoir of CWD infectivity. In this study, we demonstrate that long-term incubation of CWD prions (generated from tg-mice infected with deer or elk prions) with illite, montmorillonite (Mte) and whole soils results in decreased recovery of PrP, suggesting that binding becomes more avid and irreversible with time.

View Article and Find Full Text PDF

Chronic wasting disease (CWD), an environmentally transmissible, fatal prion disease is endemic in North America, present in South Korea and has recently been confirmed in northern Europe. The expanding geographic range of this contagious disease of free-ranging deer, moose, elk and reindeer has resulted in increasing levels of prion infectivity in the environment. Soils are involved in CWD horizontal transmission, acting as an environmental reservoir, and soil mineral and organic compounds have the ability to bind prions.

View Article and Find Full Text PDF

Potential seepage of naphthenic acids (NAs) from tailings ponds into surface water and groundwater is one of the main environmental concerns associated with the Canadian Athabasca oil sands mining operations. Here we report the application of C-labelled NA surrogate compounds to evaluate intrinsic biodegradation along groundwater flow-paths originating from oil sands tailings ponds at two different sites: a glacio-fluvial aquifer (Site 1) and a low-lying wetland (Site 2). Microcosms containing the carboxyl group labelled (99%) NA surrogates (cyclohexanecarboxylic acid, CHCA; 1,2-cyclohexanedicarboxylic acid, CHDCA; 1-adamantanecarboxylic acid, ACA) were lowered into monitoring wells for several months to allow sufficient time for substrate degradation and formation of a biofilm in conditions characteristic of the local aquifer.

View Article and Find Full Text PDF

Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed.

View Article and Find Full Text PDF

Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment.

View Article and Find Full Text PDF

Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation.

View Article and Find Full Text PDF

Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT.

View Article and Find Full Text PDF

Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is a horizontally transmissible prion disease of free ranging deer, elk and moose. Recent experimental transmission studies indicate caribou are also susceptible to the disease. CWD is present in southeast Alberta and southern Saskatchewan.

View Article and Find Full Text PDF