Publications by authors named "Alshareef H"

Precise material design and surface engineering play a crucial role in enhancing the performance of optoelectronic devices. These efforts are undertaken to particularly control the optoelectronic properties and regulate charge carrier dynamics at the surface and interface. In this study, we used ultrafast scanning electron microscopy (USEM), which is a powerful and highly sensitive surface tool that provides unique information about the photoactive charge dynamics of material surfaces selectively and spontaneously in real time and space in high spatial and temporal resolution.

View Article and Find Full Text PDF

Cutting-edge techniques utilizing continuous films made from pure, novel semiconductive materials offer promising pathways to achieve high performance and cost-effectiveness for X-ray detection. Semiconductive metal-organic framework (MOF) glass films are known for their remarkably smooth surface morphology, straightforward synthesis, and capability for large-area fabrication, presenting a new direction for high-performance X-ray detectors. Here, a novel material centered on MOF glasses for highly uniform glass film fabrication customized for X-ray detection is introduced.

View Article and Find Full Text PDF

This work focused on the preparation of novel antifouling paint based on CaCrO and CaMnO NPs as a safe protective pigment which were replaced with cuprous oxide. Three paint formulations were prepared for comparison, a blank formula without an antifouling agent (F1), a commercial antifouling formula based on 100% cuprous oxide as an antifouling agent (F2), and AF formula based on 75% CaCrO and CaMnO NPs and 25% CuO. The high performance and durability of the paints based on the prepared pigments were evident from their impact resistance, adhesion, pending, hardness, and chemical resistance, which were compared to the blank formula (F1).

View Article and Find Full Text PDF

Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor.

View Article and Find Full Text PDF
Article Synopsis
  • Aluminum-ion batteries are a promising solution for large-scale energy storage due to the abundant availability of aluminum and their cost-effectiveness.
  • A new strategy was developed to enhance cathode materials by introducing a polymer that supports dual adsorption of aluminum complex ions, increasing battery capacity.
  • The resulting cathode demonstrated impressive performance with a capacity of 110 mAh/g and stability over 3000 cycles, offering a viable option for efficient energy storage solutions.
View Article and Find Full Text PDF

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH ions can cause structural damage and material dissolution during battery operation.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are viewed as promising organic electrode materials for metal-ion batteries due to their structural diversity and tailoring capabilities. In this work, firstly using the monomers N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TPDA) and terephthaldehyde (TA), p-type phenylenediamine-based imine-linked TPDA-TA-COF is synthesized. To construct a bipolar redox-active, porous and highly crystalline polyimide-linked COF, i.

View Article and Find Full Text PDF

Here, we report the first utilization of covalent organic frameworks (COFs) in optical wireless communication (OWC) applications. In the solid form, aggregation-induced emission (AIE) luminogen often shows promising emissive characteristics that augment radiative decays and improve fluorescence. We have synthesized an through the Knoevenagel condensation reaction by taking advantage of the ability to carefully design and alter the COF structure by integrating an AIE luminogen with linear building blocks.

View Article and Find Full Text PDF

Wafer-scale transfer processes of 2D materials significantly expand their application space in scalable microelectronic devices with excellent and tunable properties through van der Waals (vdW) stacking. Unlike many 2D materials, wafer-scale transfer of MXene films for vdW contact engineering has not yet been reported. With their rich surface chemistry and tunable properties, the transfer of MXenes can enable enormous possibilities in electronic devices using interface engineering.

View Article and Find Full Text PDF

We report the engineering and synthesis of peptide nucleic acid-functionalized TiCT MXene nanosheets as a novel transducing material for amplification-free, nanoparticle-free, and isothermal electrochemical detection of microRNA biomarkers. Through bio-orthogonal copper-free click chemistry, azido-modified MXene nanosheets are covalently functionalized with clickable peptide nucleic acid probes targeting prostate cancer biomarker hsa-miR-141. The platform demonstrates a wide dynamic range, single-nucleotide specificity, and 40 aM detection limit outperforming more complex, amplification-based methods.

View Article and Find Full Text PDF

Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced.

View Article and Find Full Text PDF

The bismuth anode has garnered significant attention due to its high theoretical Na-storage capacity (386 mAh g). There have been numerous research reports on the stable solid electrolyte interphase (SEI) facilitated by electrolytes utilizing ether solvents. In this contribution, cyclic tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF) ethers are employed as solvents to investigate the sodium-ion storage properties of bismuth anodes.

View Article and Find Full Text PDF

In advanced batteries, interphases serve as the key component in stabilizing the electrolyte with reactive electrode materials far beyond thermodynamic equilibria. While an active interphase facilitates the transport of working ions, an inactive interphase obstructs ion flow, constituting the primary barrier to the realization of battery chemistries. Here, a successful transformation of a traditionally inactive passivating layer on Mg-metal anode, characteristic of Mg-metal batteries with typical carbonate electrolytes, into an active and robust interphase in the Li-metal scenario is presented.

View Article and Find Full Text PDF

Porous copper (Cu) current collectors show promise in stabilizing Li metal anodes (LMAs). However, insufficient lithiophilicity of pure Cu and limited porosity in three-dimensional (3D) porous Cu structures led to an inefficient Li-Cu composite preparation and poor electrochemical performance of Li-Cu composite anodes. Herein, we propose a porous Cu-CuZn (DG-CCZ) host for Li composite anodes to tackle these issues.

View Article and Find Full Text PDF

Purpose: Older persons are frequently prescribed several medications; therefore, inappropriate medication prescriptions are common. Prescribing potentially inappropriate medications (PIMs) poses a serious risk and hence, we aimed to assess the PIMs in older patients in Tabuk, using the 2023 Beers criteria.

Patients And Methods: A retrospective cross-sectional study was carried out, including older persons ≥65 years of age admitted in two government hospitals from June 2022 to May 2023, and prescribed with five or more medications.

View Article and Find Full Text PDF

Introduction: Kidney transplantation is a definitive treatment for end-stage renal disease. It is associated with improved life expectancy and quality of life. One of the most common complications following kidney transplantation is graft rejection.

View Article and Find Full Text PDF

In 2005, exenatide became the first approved glucagon-like peptide-1 receptor agonist (GLP-1 RA) for type 2 diabetes mellitus (T2DM). Since then, numerous GLP-1 RAs have been approved, including tirzepatide, a novel dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, which was approved in 2022. This class of drugs is considered safe with no hypoglycemia risk, making it a common second-line choice after metformin for treating T2DM.

View Article and Find Full Text PDF

Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time.

View Article and Find Full Text PDF

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers.

View Article and Find Full Text PDF

Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory.

View Article and Find Full Text PDF

One of the most effective approaches to optimizing the performance of perovskite solar cells is to fully understand the ultrafast carrier dynamics at the interfaces between absorber and transporting layers at both the molecular and atomic levels. Here, the injection dynamics of hot and relaxed charge carriers at the interface between the hybrid perovskite, formamidinium lead bromide (FAPbBr), and the organic electron acceptor, IEICO-4F, are investigated and deciphered by using femtosecond (fs) mid-infrared (IR), transient absorption (TA), and fluorescence spectroscopies. The visible femtosecond-TA measurements reveal the generation of hot carriers and their transition to free carriers in the pure FAPbBr film.

View Article and Find Full Text PDF

Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties.

View Article and Find Full Text PDF

Introduction: Entrepreneurship has recently become a focus in community development, innovation, and economic growth, including within pharmaceutical organizations. However, it remains a relatively new aspect of pharmacy education. For the effective incorporation of entrepreneurship in this field, a robust educational foundation is critical, one that emphasizes risk-taking, strategic planning, competitive spirit, and a sense of social responsibility.

View Article and Find Full Text PDF