Purpose: Stress granules (SGs) are cytoplasmic aggregates in which mRNAs and specific proteins are trapped in response to a variety of damaging agents. They participate in the cellular defense mechanisms. Currently, their mechanism of formation in response to ionizing radiation and their role in tumor-cell radiosensitivity remain elusive.
View Article and Find Full Text PDFPatients with locally advanced oropharyngeal carcinoma treated with neoadjuvant chemotherapy are reassessed both radiologically and clinically to adapt their treatment after the first cycle. However, some responders show early tumor progression after adjuvant radiotherapy. This cohort study evaluated circulating tumor cells (CTCs) from a population of locally advanced oropharyngeal carcinoma patients treated with docetaxel, cisplatin, and 5-fluorouracil (DCF) induction chemotherapy or DCF with a modified dose and fractioned administration.
View Article and Find Full Text PDFSquamous cell carcinoma is the most common type of head and neck cancer (HNSCC) with a disease-free survival at 3 years that does not exceed 30%. Biomarkers able to predict clinical outcomes are clearly needed. The purpose of this study was to investigate whether a short-term culture of tumour fragments irradiated ex vivo could anticipate patient responses to chemo- and/or radiotherapies.
View Article and Find Full Text PDFHypoxia-Inducible Factor 1α (HIF-1α), which promotes cancer cell survival, is the main regulator of oxygen homeostasis. Hypoxia combined with photon and carbon ion irradiation (C-ions) stabilizes HIF-1α. Silencing HIF-1α under hypoxia leads to substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and C-ions.
View Article and Find Full Text PDFPurpose: The clinical outcome of head and neck squamous cell carcinoma (HNSCC) remains poor, partly due to the presence of resistant cancer stem cells (CSCs) which are responsible of recurrences. CSCs have low EGFR expression and, conversely, overexpress the anti-apoptotic Bcl-2 protein, which is involved in resistance to apoptosis and the invasion/migration capacities of tumour cells.
Methods: The combination therapy of ABT-199, a Bcl-2 inhibitor, cetuximab an EGFR inhibitor, and radiation using an HNSCC model (SQ20B cell line) and its corresponding CSC subpopulation were evaluated in vitro (2D/3D cell proliferation; invasion/migration and apoptosis using videomicroscopy) and in vivo.
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance.
View Article and Find Full Text PDFWe investigated the potential involvement of ceramide-enriched membrane domains in radiation-induced targeted and nontargeted effects using head and neck squamous cell carcinoma with opposite radiosensitivities. In radiosensitive SCC61 cells, the proportion of targeted effects was 34% and nontargeted effects killed 32% of cells. In contrast, only targeted effects (30%) are involved in the overall death of radioresistant SQ20B cells.
View Article and Find Full Text PDFThe relative biological effectiveness (RBE) in particle therapy is currently estimated using biophysical models. We compared experimental measurements to the α curves as function of linear energy transfer computed by the Local Effect Model (LEM I-IV), the Microdosimetric Kinetic Model (MKM) and the NanOx model for HSG, V79 and CHO-K1 cells in response to monoenergetic irradiations. Although the LEM IV and the MKM predictions accurately reproduced the trend observed in the data, NanOx yielded a better agreement than the other models for more irradiation configurations.
View Article and Find Full Text PDFAlthough conventional radiotherapy promotes the migration/invasion of cancer stem cells (CSCs) under normoxia, carbon ion (C-ion) irradiation actually decreases these processes. Unraveling the mechanisms of this discrepancy, particularly under the hypoxic conditions that pertain in niches where CSCs are preferentially localized, would provide a better understanding of the origins of metastases. Invasion/migration, proteins involved in epithelial-to-mesenchymal transition (EMT), and expression of MMP-2 and HIF-1α were quantified in the CSC subpopulations of two head-and-neck squamous cell carcinoma (HNSCC) cell lines irradiated with X-rays or C-ions.
View Article and Find Full Text PDFThe invasion and migration abilities of tumor cells are main contributors to cancer progression and recurrence. Many studies have explored the migration and invasion abilities to understand how cancer cells disseminate, with the aim of developing new treatment strategies. Analysis of the cellular and molecular basis of these abilities has led to the characterization of cell mobility and the physicochemical properties of the cytoskeleton and cellular microenvironment.
View Article and Find Full Text PDFHead and neck cancer stem cells (CSCs) are highly resistant to treatment. When EGFR is overexpressed in head and neck squamous cell carcinoma (HNSCC), HER2 and HER3 are also expressed. The aim of the present study was to investigate the effect of HER1/2/3 blockade through a combination of cetuximab and pertuzumab, with or without photon irradiation, on the proliferation and migration/invasion capabilities of an HNSCC chemo- and radioresistant human cell line (SQ20B) and its corresponding stem cell subpopulation.
View Article and Find Full Text PDFHadrontherapy presents the major advantage of improving tumor sterilization while sparing surrounding healthy tissues because of the particular ballistic (Bragg peak) of carbon ions. However, its efficacy is still limited in the most resistant cancers, such as grade III-IV head and neck squamous cell carcinoma (HNSCC), in which the association of carbon ions with gadolinium-based nanoparticles (AGuIX) could be used as a Trojan horse. We report for the first time the radioenhancing effect of AGuIX when combined with carbon ion irradiation in human tumor cells.
View Article and Find Full Text PDFBackground: Head and neck squamous cell carcinoma (HNSCC) are resistant to standard treatments, partly due to cancer stem cells (CSCs) localised in hypoxic niches. Compared to X-rays, carbon ion irradiation relies on better ballistic properties, higher relative biological effectiveness and the absence of oxygen effect. Hypoxia-inducible factor-1α (HIF-1α) is involved in the resistance to photons, whereas its role in response to carbon ions remains unclear.
View Article and Find Full Text PDFHead and neck cancer remains a significant public health concern. About 60% of patients die within 5years due to local recurrence. Head and neck squamous cell carcinoma (HNSCC) cell lines are important preclinical models in the search for new therapies against this disease.
View Article and Find Full Text PDFCancer Stem Cells (CSCs) in Head and Neck Squamous Cell Carcinoma (HNSCC) have extremely aggressive profile (high migratory and invasive potential). These characteristics can explain their resistance to conventional treatment. Efficacy of photon and carbon ion irradiation with addition of cetuximab (5 nM) is studied on clonogenic death, migration and invasion of two HNSCC populations: SQ20B and SQ20B/CSCs.
View Article and Find Full Text PDFDespite advances in the understanding of head and neck squamous cell carcinomas (HNSCC) progression, the five-year survival rate remains low due to local recurrence and distant metastasis. One hypothesis to explain this recurrence is the presence of cancer stem-like cells (CSCs) that present inherent chemo- and radio-resistance. In order to develop new therapeutic strategies, it is necessary to have experimental models that validate the effectiveness of targeted treatments and therefore to have reliable methods for the identification and isolation of CSCs.
View Article and Find Full Text PDFNowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient.
View Article and Find Full Text PDFHead and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure.
View Article and Find Full Text PDFRadiation therapy is a cornerstone of head and neck cancer management. Technological improvements in recent years in radiation therapy, with intensity-modulated techniques, reinforce even more its role. However, both local and locoregional relapses are still observed.
View Article and Find Full Text PDFRecent evidences suggest that many types of cancers contain a cell population presenting stem cell properties. While the great majority of tumor cells are destined to differentiate, and eventually stop dividing, only a minority population of cells, termed cancer stem cells (CSCs), possesses extensive self-renewal capability and can recapitulate tumor pathophysiology in an immune-compromised animal model. Tumor initiating cells have been identified and isolated in many tumor types including brain, colon and prostate.
View Article and Find Full Text PDFThis study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death.
View Article and Find Full Text PDFGlioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer.
View Article and Find Full Text PDF