The clinical burden of mental illness, in particular schizophrenia and bipolar disorder, are driven by frequent chronic courses and increased mortality, as well as the risk for comorbid conditions such as cardiovascular disease and type 2 diabetes. Evidence suggests an overlap of molecular pathways between psychotic disorders and somatic comorbidities. In this study, we developed a computational framework to perform comorbidity modeling via an improved integrative unsupervised machine learning approach based on multi-rank non-negative matrix factorization (mrNMF).
View Article and Find Full Text PDFMotivation: Epilepsy is a multifaceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2023
Schizophrenia and bipolar disorder are characterized by highly similar neuropsychological signatures, implying shared neurobiological mechanisms between these two disorders. These disorders also have comorbidities, such as type 2 diabetes mellitus (T2DM). To date, an understanding of the mechanisms that mediate the link between these two disorders remains incomplete.
View Article and Find Full Text PDFMotivation: A global medical crisis like the coronavirus disease 2019 (COVID-19) pandemic requires interdisciplinary and highly collaborative research from all over the world. One of the key challenges for collaborative research is a lack of interoperability among various heterogeneous data sources. Interoperability, standardization and mapping of datasets are necessary for data analysis and applications in advanced algorithms such as developing personalized risk prediction modeling.
View Article and Find Full Text PDFExcess labile heme, occurring under hemolytic conditions, displays a versatile modulator in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding to plasma proteins or through interaction with participating cell types. However, despite several independent reports on these effects, apparently contradictory observations and significant knowledge gaps characterize this relationship, which hampers a complete understanding of heme-driven coagulopathies and the development of suitable and specific treatment options.
View Article and Find Full Text PDFDistinct gene expression patterns within cells are foundational for the diversity of functions and unique characteristics observed in specific contexts, such as human tissues and cell types. Though some biological processes commonly occur across contexts, by harnessing the vast amounts of available gene expression data, we can decipher the processes that are unique to a specific context. Therefore, with the goal of developing a portrait of context-specific patterns to better elucidate how they govern distinct biological processes, this work presents a large-scale exploration of transcriptomic signatures across three different contexts (i.
View Article and Find Full Text PDFMotivation: The importance of clinical data in understanding the pathophysiology of complex disorders has prompted the launch of multiple initiatives designed to generate patient-level data from various modalities. While these studies can reveal important findings relevant to the disease, each study captures different yet complementary aspects and modalities which, when combined, generate a more comprehensive picture of disease etiology. However, achieving this requires a global integration of data across studies, which proves to be challenging given the lack of interoperability of cohort datasets.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.ailsci.
View Article and Find Full Text PDFDespite available vaccinations COVID-19 case numbers around the world are still growing, and effective medications against severe cases are lacking. In this work, we developed a machine learning model which predicts mortality for COVID-19 patients using data from the multi-center 'Lean European Open Survey on SARS-CoV-2-infected patients' (LEOSS) observational study (>100 active sites in Europe, primarily in Germany), resulting into an AUC of almost 80%. We showed that molecular mechanisms related to dementia, one of the relevant predictors in our model, intersect with those associated to COVID-19.
View Article and Find Full Text PDFMotivation: The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models. However, representations based on a single modality are inherently limited.
View Article and Find Full Text PDFMotivation: Table recognition systems are widely used to extract and structure quantitative information from the vast amount of documents that are increasingly available from different open sources. While many systems already perform well on tables with a simple layout, tables in the biomedical domain are often much more complex. Benchmark and training data for such tables are however very limited.
View Article and Find Full Text PDFThe utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2021
The past decades have brought a steady growth of pathway databases and enrichment methods. However, the advent of pathway data has not been accompanied by an improvement in interoperability across databases, hampering the use of pathway knowledge from multiple databases for enrichment analysis. While integrative databases have attempted to address this issue, they often do not account for redundant information across resources.
View Article and Find Full Text PDFWe attempt to address a key question in the joint analysis of transcriptomic data: can we correlate the patterns we observe in transcriptomic datasets to known interactions and pathway knowledge to broaden our understanding of disease pathophysiology? We present a systematic approach that sheds light on the patterns observed in hundreds of transcriptomic datasets from over sixty indications by using pathways and molecular interactions as a template. Our analysis employs transcriptomic datasets to construct dozens of disease specific co-expression networks, alongside a human protein-protein interactome network. Leveraging the interoperability between these two network templates, we explore patterns both common and particular to these diseases on three different levels.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific community's massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made.
View Article and Find Full Text PDFThe SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme.
View Article and Find Full Text PDFBackground: Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative diseases, such as Alzheimer's disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies. Linking these two disparate layers (i.
View Article and Find Full Text PDFMotivation: The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development.
View Article and Find Full Text PDFSummary: The COVID-19 crisis has elicited a global response by the scientific community that has led to a burst of publications on the pathophysiology of the virus. However, without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale.
View Article and Find Full Text PDFBackground: Recent studies have suggested comorbid association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) through identification of shared molecular mechanisms. However, the inference is pre-dominantly literature-based and lacks interpretation of pre-disposed genomic variants and transcriptomic measurables.
Objective: In this study, we aim to identify shared genetic variants and dysregulated genes in AD and T2DM and explore their functional roles in the comorbidity between the diseases.
Driven by the use cases of PubChemRDF and SCAIView, we have developed a first community-based clinical trial ontology (CTO) by following the OBO Foundry principles. CTO uses the Basic Formal Ontology (BFO) as the top level ontology and reuses many terms from existing ontologies. CTO has also defined many clinical trial-specific terms.
View Article and Find Full Text PDFScientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet.
View Article and Find Full Text PDFBackground: Literature derived knowledge assemblies have been used as an effective way of representing biological phenomenon and understanding disease etiology in systems biology. These include canonical pathway databases such as KEGG, Reactome and WikiPathways and disease specific network inventories such as causal biological networks database, PD map and NeuroMMSig. The represented knowledge in these resources delineates qualitative information focusing mainly on the causal relationships between biological entities.
View Article and Find Full Text PDFThe PTSD Biomarker Database (PTSDDB) is a database that provides a landscape view of physiological markers being studied as putative biomarkers in the current post-traumatic stress disorder (PTSD) literature to enable researchers to explore and compare findings quickly. The PTSDDB currently contains over 900 biomarkers and their relevant information from 109 original articles published from 1997 to 2017. Further, the curated content stored in this database is complemented by a web application consisting of multiple interactive visualizations that enable the investigation of biomarker knowledge in PTSD (e.
View Article and Find Full Text PDF