This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system's potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer).
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
September 2024
Objective: In cases where the brands of implants are not known, treatment options can be significantly limited in potential complications arising from implant procedures. This research aims to explore the application of deep learning techniques for the classification of dental implant systems using panoramic radiographs. The primary objective is to assess the superiority of the proposed model in achieving accurate and efficient dental implant classification.
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the common types of cancer with a high mortality rate. Colonoscopy is the gold standard for CRC screening and significantly reduces CRC mortality. However, due to many factors, the rate of missed polyps, which are the precursors of colorectal cancer, is high in practice.
View Article and Find Full Text PDFDeep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis.
View Article and Find Full Text PDF