Nasal vaccination is considered to be an effective and convenient way of increasing immune responses both systemically and locally. Although various nanovaccine carriers have been introduced as potential immune adjuvants, further improvements are still needed before they can be taken to clinical usage. Chitosan-based nanovaccine carriers are one of the most widely studiedadjuvants, owing to the abilityof chitosan toopen tight junctions between nasal epithelial cells and enhance particle uptake as well as its inherent immune activating role.
View Article and Find Full Text PDFHere, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route.
View Article and Find Full Text PDFNasal immunisation with nanoparticles has already shown promising results. In this study, nanoparticle composites carrying BSA for nasal vaccination prepared using electrostatic interaction process between polycation N-trimethyl chitosan chloride (TMC), chitosan glutamate (CG), chitosan chloride (CCl) and polyanion carboxymethyl pullulan (CMP). A mass ratio of 2:1 for TMC-CMP combination produced stable nanocarriers.
View Article and Find Full Text PDFDue to its excellent transfectability, the human embryonic kidney (HEK) 293 cell line is widely used as an in vitro model system for transfection experiments. Particle bombardment, or biolistics technology, provides a physical transfection approach that can deliver transgene materials efficiently into many different cell lines. Transfection of 293 cells by gene gun, allows examination of transgene expression in epithelial cells, as well as studies concerning a variety of questions in neurobiology.
View Article and Find Full Text PDFThe successful development of particulate vaccines depends on the understanding of their physicochemical and biological characteristics. Therefore, the main purpose of this study was to develop and characterise stable surface modified poly(lactic acid) (PLA) nanoparticles, using polyvinyl alcohol (PVA), alginate (ALG) and glycolchitosan (GCS) containing a Streptococcus equi enzymatic extract adsorbed onto the surface. The characterisation of the preparations and a physicochemical study of the adsorption process were performed.
View Article and Find Full Text PDFAntigen application onto skin that has been pre-treated with low frequency ultrasound leads to immunisation, and it was hypothesised that immunisation could be enhanced if antigens were entrapped within liposomes, the latter being known vaccine adjuvants. However, it has been suggested that liposomes can repair skin damage, which could limit antigen permeation and transcutaneous immunisation. The aim of the present work was therefore to investigate the influence of liposome application on subsequent: (i) in vitro antigen permeation through, and (ii) in vivo barrier properties of, ultrasound-treated skin.
View Article and Find Full Text PDFBackground: Recently, particle bombardment has become increasingly popular as a transfection method, because of a reduced dependency on target cell characteristics. In this study, we evaluated in vitro gene transfer by particle bombardment.
Methods: gWIZ luciferase and gWIZ green fluorescent protein (GFP) plasmids were used as reporter genes.
Simultaneously Manufactured Nano-In-Micro (SIMANIM) particles for the pulmonary delivery of antibodies have been prepared by the spray-drying of a double-emulsion containing human IgG (as a model antibody), lactose, poly(lactide-co-glycolide) (PLGA) and dipalmitoylphosphatidylcholine (DPPC). The one-step drying process involved producing microparticles of a diameter suitable for inhalation that upon contact with aqueous media, partially dissolved to form nanoparticles, approximately 10-fold smaller than their original diameter. Continuous release of the model antibody was observed for 35 days in pH 2.
View Article and Find Full Text PDFStreptococcus equi subspecies equi affects animals of Equidae family and is the causative agent of strangles, an acute, extremely contagious and deadly disease. Prolonged periods of protection associated to absence of serious adverse reactions were not yet achieved. Thus, this experimental work is focused on the study of mucosal, humoral and cellular immune responses developed in a mouse model, after the intranasal administration of S.
View Article and Find Full Text PDFStrangles is a bacterial infection of the Equidae family that affects the nasopharynx and draining lymph nodes, caused by Streptococcus equi subspecies equi. This agent is responsible for 30% of all worldwide equine infections and is quite sensitive to penicillin and other antibiotics. However, prevention is still the best option because the current antibiotic therapy and vaccination is often ineffective.
View Article and Find Full Text PDFLow-frequency ultrasound application is known to increase the skin's permeability to large molecules such as vaccines, and to enable transcutaneous immunisation. Sodium dodecyl sulphate (SDS) - a skin irritant - is often included in the coupling medium at 1% (w/v), as this has been found to enhance skin permeability. In this paper we show, for the first time, the feasibility of low-frequency ultrasound-assisted transcutaneous immunisation in the absence of SDS.
View Article and Find Full Text PDFGene therapy based on small interfering RNA (siRNA) has emerged as an exciting new therapeutic approach. However, insufficient cellular uptake and poor stability have limited its usefulness. Polyethyleneimine (PEI) has been extensively studied as a vector for nucleic acids and incorporation of PEI into poly(d,l-lactide-co-glycolide) (PLGA) particles has been shown to be useful in the development of gene delivery.
View Article and Find Full Text PDFMucosal application of a vaccine can effectively induce both systemic and mucosal immune responses. In general, mucosal applications of antigens result in poor immune responses. Therefore, adjuvant/delivery systems are required to enhance the immune response.
View Article and Find Full Text PDFStreptococcus equi subsp. equi is the causative agent of Strangles, which is one of the most costly and widespread infectious diseases, affecting the respiratory tract of Equidae. In this work, polyvinyl alcohol, alginate and chitosan were used in formulations of surface modified poly-epsilon-caprolactone microspheres which were evaluated after adsorption of S.
View Article and Find Full Text PDFAbstractThis review article focuses on intranasal immunisation against influenza,although it also encompasses antigen uptake and processing in the nasopharyngealpassages, host defence from influenza and current influenza vaccination practices.Improvement of current vaccination strategies is clearly required; current proceduresinvolve repeated annual injections that sometimes fail to protect the recipient. It isenvisaged that nonpercutaneous immunisation would be more attractive to potentialvaccinees, thus improving uptake and coverage.
View Article and Find Full Text PDFPurpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system.
Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen.
Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration.
Since 1998, multiple strains of bluetongue virus (BTV), belonging to six different serotypes (types 1, 2, 4, 8, 9 and 16) have caused outbreaks of disease in Europe, causing one of the largest epizootics of bluetongue ever recorded, with the deaths of >1.8 million animals (mainly sheep). The persistence and continuing spread of BTV in Europe and elsewhere highlights the importance of sensitive and reliable diagnostic assay systems that can be used to rapidly identify infected animals, helping to combat spread of the virus and disease.
View Article and Find Full Text PDFJ Control Release
October 2006
Gene silencing mediated by double-stranded small interfering RNA (siRNA) has been widely investigated as a potential therapeutic approach for diseases with genetic defects. The use of siRNA, however, is hampered by its rapid degradation and poor cellular uptake into cells in vitro or in vivo. Therefore, we have explored chitosan as a siRNA vector due to its advantages such as low toxicity, biodegradability and biocompatibility.
View Article and Find Full Text PDFNumerous strategies are currently available for preparing liposomes, although no single method is ideal in every respect. Two methods for producing liposomes using compressed carbon dioxide in either its liquid or supercritical state were therefore investigated as possible alternatives to the conventional techniques currently used. The first technique used modified compressed carbon dioxide as a solvent system.
View Article and Find Full Text PDFProtection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route.
View Article and Find Full Text PDFPoly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles.
View Article and Find Full Text PDFStrategies for gene delivery comprise a diverse range of live and synthetic approaches; DNA delivery for the purposes of immunisation in turn comprises a large part of this research. This review mainly discusses synthetic systems for application in the delivery of plasmid DNA vaccines, outlining polylactide-co-glycolide, liposome, chitosan and complex combination delivery systems. Areas of promise for DNA vaccine candidates include immune modulation of allergic responses and veterinarian application.
View Article and Find Full Text PDFThe characterization of the immunological cascades of the innate immune system activated by pathogen associated molecular patterns (PAMP) recognized by pattern recognition receptors (PRR) have allowed the elucidation of the mechanisms underlying the immunomodulatory properties of adjuvants. Thus, the combinatorial use of adjuvants with specific, complementary functions is investigated to achieve tailored immune responses to subunit vaccines. We have previously shown how combinatorial administration of chitosan and cholera toxin B or muramyl-di-peptide (MDP) intranasally, but not intramuscularly, can allow small doses of MDP which, when administered alone cannot adjuvantise Helicobacter pylori urease (rUre), achieve an immunomodulatory effect through the specific physiological effect of chitosan.
View Article and Find Full Text PDFThe aim of this study was to further investigate the interactions between cholesterol (CH) and mixed bile salts (BS) (sodium cholate and sodium deoxycholate) and their suitability for drug and vaccine delivery. Insulin was used as a model protein to assess the ability of CH:BS vesicles to entrap a therapeutically relevant macromolecule. The association of protein (FITC-insulin) with the CH:BS structure was confirmed with fluorescence microscopy, and the overall morphology of the vesicles was examined with atomic force microscopy (AFM).
View Article and Find Full Text PDFThe structural integrity of herpes simplex virus 2 (HSV-2) during freezing, thawing, and lyophilization has been studied using scanning and transmission electron microscopy. Viral particles should be thawed quickly from -80 to 37 degrees C to avoid artifacts of thawing. To avoid freezing damage, the virus should be rapidly frozen (>20 K s(-1)) rather than slowly frozen as occurs on the shelf of a lyophilizer (<1 K s(-1)).
View Article and Find Full Text PDF