Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 μM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds.
View Article and Find Full Text PDFA series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite . Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies.
View Article and Find Full Text PDFPhenotypic whole-cell screening against () in glycerol-alanine-salts supplemented with Tween 80 and iron (GASTE-Fe) media led to the identification of a 2-aminoquinazolinone hit compound, sulfone which was optimized for solubility by replacing the sulfone moiety with a sulfoxide . The synthesis and structure-activity relationship (SAR) studies identified several compounds with potent antimycobacterial activity, which were metabolically stable and noncytotoxic. Compound displayed favorable properties and was therefore selected for pharmacokinetic (PK) studies where it was found to be extensively metabolized to the sulfone .
View Article and Find Full Text PDFA phenotypic whole cell high-throughput screen against the asexual blood and liver stages of the malaria parasite identified a benzimidazole chemical series. Among the hits were the antiemetic benzimidazole drug Lerisetron (IC NF54 = 0.81 μM) and its methyl-substituted analogue (IC NF54 = 0.
View Article and Find Full Text PDFA lead-optimization program around a 2,6-imidazopyridine scaffold was initiated based on the two early lead compounds, 1 and 2, that were shown to be efficacious in an in vivo humanized Plasmodium falciparum NODscidIL2Rγnull mouse malaria infection model. The observation of atypical dose-response curves when some compounds were tested against multidrug resistant malaria parasite strains guided the optimization process to define a chemical space that led to typical sigmoidal dose-response and complete kill of multidrug resistant parasites. After a structure and property analysis identified such a chemical space, compounds were prepared that displayed suitable activity, ADME, and safety profiles with respect to cytotoxicity and hERG inhibition.
View Article and Find Full Text PDFThe 2-aminopyridine MMV048 was the first drug candidate inhibiting phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant and clinical isolates.
View Article and Find Full Text PDFOptimization of a chemical series originating from whole-cell phenotypic screening against the human malaria parasite, Plasmodium falciparum, led to the identification of two promising 2,6-disubstituted imidazopyridine compounds, 43 and 74. These compounds exhibited potent activity against asexual blood stage parasites that, together with their in vitro absorption, distribution, metabolism, and excretion (ADME) properties, translated to in vivo efficacy with clearance of parasites in the PfSCID mouse model for malaria within 48 h of treatment.
View Article and Find Full Text PDFA BioFocus DPI SoftFocus library of ∼35 000 compounds was screened against Mycobacterium tuberculosis (Mtb) in order to identify novel hits with antitubercular activity. The hits were evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc complex, disruption of cell-wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization.
View Article and Find Full Text PDFIntroduction of water-solubilizing groups on the 5-phenyl ring of a 2-aminopyrazine series led to the identification of highly potent compounds against the blood life-cycle stage of the human malaria parasite Plasmodium falciparum. Several compounds displayed high in vivo efficacy in two different mouse models for malaria, P. berghei-infected mice and P.
View Article and Find Full Text PDFA novel class of imidazopyridazines identified from whole cell screening of a SoftFocus kinase library was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant strain) and NF54 (sensitive strain). Structure-activity relationship studies led to the identification of highly potent compounds against both strains. Compound 35 was highly active (IC50: K1 = 6.
View Article and Find Full Text PDFA novel series of 2,4-diaminothienopyrimidines with potential as antimalarials was identified from whole-cell high-throughput screening of a SoftFocus ion channel library. Synthesis and structure-activity relationship studies identified compounds with potent antiplasmodial activity and low in vitro cytotoxicity. Several of these analogues exhibited in vivo activity in the Plasmodium berghei mouse model when administered orally.
View Article and Find Full Text PDFReplacement of the pyridine core of antimalarial 3,5-diaryl-2-aminopyridines led to the identification of a novel series of pyrazine analogues with potent oral antimalarial activity. However, other changes to the pyridine core and replacement or substitution of the 2-amino group led to loss of antimalarial activity. The 3,5-diaryl-2-aminopyrazine series showed impressive in vitro antiplasmodial activity against the K1 (multidrug resistant) and NF54 (sensitive) strains of Plasmodium falciparum in the nanomolar IC50 range of 6-94 nM while also demonstrating good in vitro metabolic stability in human liver microsomes.
View Article and Find Full Text PDFSomatic angiotensin I-converting enzyme (ACE)has two homologous active sites (N and C domains) that show differences in various biochemical properties.In a previous study, we described the use of positionals canning synthetic combinatorial (PS-SC) libraries of fluorescence resonance energy transfer (FRET) peptides to define the ACE C-domain versus N-domain substrate specificity and developed selective substrates for the C-domain(Bersanetti et al., 2004).
View Article and Find Full Text PDFIn an effort to address potential cardiotoxicity liabilities identified with earlier frontrunner compounds, a number of new 3,5-diaryl-2-aminopyridine derivatives were synthesized. Several compounds exhibited potent antiplasmodial activity against both the multidrug resistant (K1) and sensitive (NF54) strains in the low nanomolar range. Some compounds displayed a significant reduction in potency in the hERG channel inhibition assay compared to previously reported frontrunner analogues.
View Article and Find Full Text PDFA novel class of orally active antimalarial 3,5-diaryl-2-aminopyridines has been identified from phenotypic whole cell high-throughput screening of a commercially available SoftFocus kinase library. The compounds were evaluated in vitro for their antiplasmodial activity against K1 (chloroquine and drug-resistant strain) and NF54 (chloroquine-susceptible strain) as well as for their cytotoxicity. Synthesis and structure-activity studies identified a number of promising compounds with selective antiplasmodial activity.
View Article and Find Full Text PDFAn aminomethylthiazole pyrazole carboxamide lead 3 with good in vitro antiplasmodial activity [IC(50): 0.08 μM (K1, chloroquine and multidrug resistant strain) and 0.07 μM (NF54, chloroquine sensitive strain)] and microsomal metabolic stability was identified from whole cell screening of a SoftFocus kinase library.
View Article and Find Full Text PDFDipeptidyl carboxypeptidase from Escherichia coli (EcDcp) is a zinc metallopeptidase with catalytic properties closely resembling those of angiotensin I-converting enzyme (ACE). However, EcDcp and ACE are classified in different enzyme families (M3 and M2, respectively) due to differences in their primary sequences. We cloned and expressed EcDcp and studied in detail the enzyme's S(3) to S(1)' substrate specificity using positional-scanning synthetic combinatorial (PS-SC) libraries of fluorescence resonance energy transfer (FRET) peptides.
View Article and Find Full Text PDFThe foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) self-processes inefficiently at the L(pro)/VP4 cleavage site LysLeuLys*GlyAlaGly (* indicates cleaved peptide bond) when the leucine at position P2 is replaced by phenylalanine. Molecular modeling and energy minimization identified the L(pro) residue L143 as being responsible for this discrimination. The variant L(pro) L143A self-processed efficiently at the L(pro)/VP4 cleavage site containing P2 phenylalanine, whereas the L143M variant did not.
View Article and Find Full Text PDFNovel analogues of the angiotensin I-converting enzyme (ACE) inhibitor keto-ACE were synthesized via a facile Horner-Emmons olefination of a phosphonoketone precursor with ethyl glyoxylate. Introduction of a bulky aromatic tryptophan at the P(2)(') position of keto-ACE resulted in a significant increase in C-domain-selectivity.
View Article and Find Full Text PDFWith a view to developing a more C-domain-selective angiotensin I-converting enzyme (ACE)-inhibitor, a novel analogue of lisinopril has been synthesized which incorporates a bulky P(2)(') tryptophan functionality. This inhibitor demonstrated a significantly increased specificity for the C-domain as compared with lisinopril. Molecular docking revealed hydrophobic and hydrogen-bonding interactions with residues of the C-domain S(2)(') subsite.
View Article and Find Full Text PDFInhibition of angiotensin I-converting enzyme (ACE) has become an effective strategy in the treatment of hypertension and cardiovascular disease. Keto-ACE, a previously described C-domain selective ACE inhibitor, was used as the basis for the design, synthesis and molecular modelling of a series of novel ketomethylene derivatives for which ACE inhibition profiles and structural characterisation are reported. Ki determinations indicated that the introduction of a bulky aromatic tryptophan at the P2' position of keto-ACE significantly increased selectivity for the C-domain, while an aliphatic P2 Boc group conferred N-domain selectivity.
View Article and Find Full Text PDFHuman somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors.
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2005
Somatic angiotensin-converting enzyme (ACE) is an essential component of the renin-angiotensin system and consequently plays a key role in blood pressure and electrolyte homeostasis. Thus, ACE inhibitors are widely used in the treatment of cardiovascular disease, causing a decrease in the production of angiotensin II and an increase in the circulating vasodilator bradykinin. The ectodomain of ACE consists of two parts (N and C domains), each bearing an active site that differs in substrate and inhibitor specificity.
View Article and Find Full Text PDF