Publications by authors named "Aloysie Manishimwe"

Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (T). To address this, some studies have used canopy temperature (T). However, T fails to capture the fine-scale variation in T among leaves and species in diverse canopies.

View Article and Find Full Text PDF

The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at 25 °C (Vcmax25), stomatal conductance (gs) and the slope parameter of the stomatal conductance-photosynthesis model (g1), in 10 early successional (ES) and 8 late-successional (LS) tropical tree species grown at three sites along an elevation gradient in Rwanda, differing by 6.

View Article and Find Full Text PDF

Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate. Thermal thresholds of the photosynthetic system of sun-exposed leaves were investigated in three tropical montane tree species native to Rwanda with different growth and water use strategies (Harungana montana, Syzygium guineense and Entandrophragma exselsum).

View Article and Find Full Text PDF

Tropical climates are getting warmer, with pronounced dry periods in large areas. The productivity and climate feedbacks of future tropical forests depend on the ability of trees to acclimate their physiological processes, such as leaf dark respiration (R ), to these new conditions. However, knowledge on this is currently limited due to data scarcity.

View Article and Find Full Text PDF