A systematic kinetic study was conducted in subcritical water medium in the temperature range from 150 to 200 °C for pure glucose, xylose, proline and aspartic acid as well as binary mixtures of sugars + amino acids to understand the reaction kinetics and interactions among biomass components and to discern the influence of Maillard reaction (MR) on the overall reaction kinetics. The main degradation products identified for glucose and xylose were the respective dehydration products, hydroxymethyl furfural and furfural, yielding an increasing solid residue with temperature (15.9 wt% at 200 °C) with an augmented heating value.
View Article and Find Full Text PDFThe hydrolysis of the water-soluble protein (WSP) fraction from tuna fish meal was evaluated by subcritical water (subW) by using N and CO as different pressurization agents in the temperature range from 140 to 180 °C. For both gases, the amino group release increased by increasing working temperature while the Lowry response decreased due to production of smaller-size peptides and free amino acids. The free amino acid content was higher with CO than with N.
View Article and Find Full Text PDFThe feasibility of industrial subcritical water treatment on residue through scaling up from the lab to pilot system in discontinuous mode (geometric scale-up factor = 50), at 130 and 175 °C (5% biomass), was investigated. The maximum volumes of the reactors were 500 mL at the lab-scale and 5 L at the pilot-scale system. At 175 °C, faster extraction/hydrolysis was observed for the pilot plant, but maximum yields were similar: 71.
View Article and Find Full Text PDFBioeconomy and environmental issues envisage industrial by-products such as Brewer's spent grain (BSG) as renewable resources for their recycling and reuse within a biorefinery concept. This study aimed to investigate the production of bioethanol from subcritical water (subW) pretreated BSG, following the conversion of the BSG biopolymers cellulose and hemicelluloses. The subW pretreatment was performed in a batch reactor at 174 °C, during 60 min and 5% () of dry BSG charge.
View Article and Find Full Text PDFThe double effect of supercritical carbon dioxide, sc-CO, in a biorefinery concept applied to brewer's spent grain (BSG) was assessed in this work. Extraction conditions to remove and valorize the lipophilic fraction were studied (20-40 MPa and 40-80 °C) obtaining a maximum yield of 5.70 ± 0.
View Article and Find Full Text PDFThe valorization of the brewer's spent grain (BSG) generated in a craft beer industry was studied by subcritical water hydrolysis in a semi-continuous fixed-bed reactor. Temperature was varied from 125 to 185 °C at a constant flow rate of 4 mL/min. Biomass hydrolysis yielded a maximum of 78% of solubilized protein at 185 °C.
View Article and Find Full Text PDFBrewer's spent grain (BSG) was chemically characterized obtaining 52.1% of carbohydrates, 17.8% protein, 5.
View Article and Find Full Text PDF