IEEE Trans Pattern Anal Mach Intell
December 2022
Neural networks that are based on the unfolding of iterative solvers as LISTA (Learned Iterative Soft Shrinkage), are widely used due to their accelerated performance. These networks, trained with a fixed dictionary, are inapplicable in varying model scenarios, as opposed to their flexible non-learned counterparts. We introduce, Ada-LISTA, an adaptive learned solver which receives as input both the signal and its corresponding dictionary, and learns a universal architecture to serve them all.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2019
Single image dehazing is a critical stage in many modern-day autonomous vision applications. Early prior-based methods often involved a time-consuming minimization of a hand-crafted energy function. Recent learning-based approaches utilize the representational power of deep neural networks (DNNs) to learn the underlying transformation between hazy and clear images.
View Article and Find Full Text PDF