How do sensory systems account for stimuli generated by natural behavior? We addressed this question by examining how an ethologically relevant class of saccades modulates visual representations in the mouse superior colliculus (SC), a key region for sensorimotor integration. We quantified saccadic modulation by recording SC responses to visual probes presented at stochastic saccade-probe latencies. Saccades significantly impacted population representations of the probes, with early enhancement that began prior to saccades and pronounced suppression for several hundred milliseconds following saccades, independent of units' visual response properties or directional tuning.
View Article and Find Full Text PDFThe generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo.
View Article and Find Full Text PDFThe processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning.
View Article and Find Full Text PDFThe generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain.
View Article and Find Full Text PDFThe processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of bipolar cells along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning.
View Article and Find Full Text PDFMyelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear.
View Article and Find Full Text PDFAntagonistic interactions between center and surround receptive field (RF) components lie at the heart of the computations performed in the visual system. Circularly symmetric center-surround RFs are thought to enhance responses to spatial contrasts (i.e.
View Article and Find Full Text PDFTuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning and performance, yet their computational capabilities remain unclear. Structural-functional mapping of the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing different motor variable combinations within and between their two tuft hemi-trees.
View Article and Find Full Text PDFJ Neurosci
November 2019
The brain operates surprisingly well despite the noisy nature of individual neurons. The central mechanism for noise mitigation in the nervous system is thought to involve averaging over multiple noise-corrupted inputs. Subsequently, there has been considerable interest in identifying noise structures that can be integrated linearly in a way that preserves reliable signal encoding.
View Article and Find Full Text PDFThe piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown.
View Article and Find Full Text PDFDendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina.
View Article and Find Full Text PDFDirectionally tuned signalling in starburst amacrine cell (SAC) dendrites lies at the heart of the circuit that detects the direction of moving stimuli in the mammalian retina. The relative contributions of intrinsic cellular properties and network connectivity to SAC direction selectivity remain unclear. Here we present a detailed connectomic reconstruction of SAC circuitry in mouse retina and describe two previously unknown features of synapse distributions along SAC dendrites: input and output synapses are segregated, with inputs restricted to proximal dendrites; and the distribution of inhibitory inputs is fundamentally different from that observed in rabbit retina.
View Article and Find Full Text PDFUnlabelled: Feedforward (FF) inhibition is a common motif in many neural networks. Typically, excitatory inputs drive both principal neurons and interneurons; the interneurons then inhibit the principal neurons, thereby regulating the strength and timing of the FF signal. The interneurons introduce a likely nonlinear processing step that could distort the excitation/inhibition (E/I) ratio in the principal neuron, potentially degrading the reliability of computation in the circuit.
View Article and Find Full Text PDFPostsynaptic responses in many CNS neurons are typically small and variable, often making it difficult to distinguish physiologically relevant signals from background noise. To extract salient information, neurons are thought to integrate multiple synaptic inputs and/or selectively amplify specific synaptic activation patterns. Here, we present evidence for a third strategy: directionally selective ganglion cells (DSGCs) in the mouse retina multiplicatively scale visual signals via a mechanism that requires both nonlinear NMDA receptor (NMDAR) conductances in DSGC dendrites and directionally tuned inhibition provided by the upstream retinal circuitry.
View Article and Find Full Text PDFCortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs.
View Article and Find Full Text PDFProc IEEE Inst Electr Electron Eng
May 2014
In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based "technology" that underlies the brain's remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or "neuron," yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood.
View Article and Find Full Text PDFThe voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp"), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance.
View Article and Find Full Text PDF