Angular momentum plays a central role in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons. Thus far, the creation of a vortex beam of a nonelementary particle has never been demonstrated experimentally.
View Article and Find Full Text PDFSupersonic beams are a prevalent source of cold molecules used in the study of chemical reactions, atom interferometry, gas-surface interactions, precision spectroscopy, molecular cooling, and more. The triumph of this method emanates from the high densities produced in relation to other methods; however, beam density remains fundamentally limited by interference with shock waves reflected from collimating surfaces. We show experimentally that this shock interaction can be reduced or even eliminated by cryocooling the interacting surface.
View Article and Find Full Text PDF