Trans R Soc Trop Med Hyg
January 2021
In the aftermath of a natural disaster, multispecialty rapid response teams are deployed to support health-related relief work. Microbiologists are often part of such teams, along with public health specialists, clinicians and entomologists, and can contribute to the response in multiple ways. The role of a microbiologist is critical not only for laboratory diagnosis of infectious diseases, but also for situational analysis and evaluation, planning, prevention and control.
View Article and Find Full Text PDFSteady-state and time-resolved fluorometric techniques have been exploited to study the photophysical and distribution behavior of an efficient cancer cell photosensitizer, norharmane (NHM), in well-characterized, biomimicking nanocavities formed by cationic micelles with varying surfactant chain length. Amphiphiles like dodecyl trimethyl ammonium bromide (DTAB), tetradecyl trimethyl ammonium bromide (TTAB), and cetyl trimethyl ammonium bromide (CTAB) have been used for the purpose. Emission behavior of NHM is very much dependent on the surfactant concentration as well as their hydrophobic chain length.
View Article and Find Full Text PDFA steady-state and time-resolved photophysical study of a cationic phenazinium dye, phenosafranin (PSF), has been investigated in well-characterized biomimetic micellar nanocavities formed by anionic surfactants of varying chain lengths, namely, sodium decyl sulfate (S(10)S), sodium dodecyl sulfate (S(12)S), and sodium tetradecyl sulfate (S(14)S). In all these micellar environments, the charge transfer fluorescence of PSF shows a large hypsochromic shift along with an enhancement in the fluorescence quantum yield as compared to that in aqueous medium. A reduction in the nonradiative deactivation rate within the hydrophobic interior of micelles led to an increase in the fluorescence yield and lifetime.
View Article and Find Full Text PDFInteraction of a beta-carboline based biologically active molecule, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), with alpha-, beta-, and gamma-cyclodextrins (CDs) in aqueous solution has been studied using steady state and time-resolved fluorescence and steady-state fluorescence anisotropy techniques. Polarity dependent intramolecular charge transfer (ICT) process is responsible for the remarkable sensitivity of this biological fluorophore to the CD environments. Upon encapsulation, the CT fluorescence exhibits hypsochromic shift along with enhancements in the fluorescence yield, fluorescence anisotropy (r), and fluorescence lifetime.
View Article and Find Full Text PDFA photophysical study of norharmane (NHM), an efficient cancer cell photosensitizer, has been undertaken in well-characterized biomimetic micellar nanocavities formed by anionic surfactants of varying chain length, namely, sodium decyl sulfate (S10S), sodium dodecyl sulfate (S12S), and sodium tetradecyl sulfate (S14S), using steady-state and time-resolved fluorescence spectroscopy. The effect of the hydrophobic chain length on the structural dynamism of the fluorophore has been reported. Experimental results demonstrate that the equilibrium of this dynamism is sensitive to the environment.
View Article and Find Full Text PDFA photophysical study on the binding interaction of an efficient cancer cell photosensitizer, norharmane (NHM), with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), has been performed using a combination of steady-state and time-resolved fluorescence techniques. The emission profile undergoes a remarkable change upon addition of the proteins to the buffered aqueous solution of the photosensitizer. The polarity-dependent prototropic transformation is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments.
View Article and Find Full Text PDFIn continuation of our recent study on the steady state photophysics of a biologically active beta-carboline derivative, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in the present article we have investigated the effect of nanocavity confinement on the excited state dynamics and rotational relaxation of the probe using picosecond time resolved fluorescence and fluorescence anisotropy techniques. The polarity dependent intramolecular charge transfer process is responsible for the remarkable sensitivity of this biological fluorophore in micellar environments. The fluorescence anisotropy decay of AODIQ incorporated inside the micelle is biexponential.
View Article and Find Full Text PDFSteady-state fluorescence measurements and isothermal titration calorimetric experiments have been performed to study the interaction between a telechelic polymer, pyrene-end-capped poly(ethylene oxide) (PYPY), and sodium alkyl sulfate surfactants having decyl, dodecyl, and tetradecyl hydrocarbon tails. Fluorometric results suggest polymer-surfactant interaction in the very low range of polymer concentrations. The relative variation in the excimer to monomer pyrene emission intensities with varying surfactant concentration reveals that initial addition of surfactant favors intramolecular preassociation until the surfactant molecules start binding with the ethylene oxide (EO) chain.
View Article and Find Full Text PDFTuning of the sensory capability of a potentially bioactive indoloquinolizine system, namely, 3-acetyl-4-oxo-6,7-dihydro-12H-indolo-[2,3-a]-quinolizine (AODIQ), is described in a biomimicking micellar nanocage. It has been shown that surfactant concentration dictates the sensing behavior of the fluorophore toward physiologically essential trace metals, such as Cu2+. This is a simple, efficient, and general technique that allows one to utilize the sensor to its maximum efficiency.
View Article and Find Full Text PDF