Background Missed fractures are a common cause of diagnostic discrepancy between initial radiographic interpretation and the final read by board-certified radiologists. Purpose To assess the effect of assistance by artificial intelligence (AI) on diagnostic performances of physicians for fractures on radiographs. Materials and Methods This retrospective diagnostic study used the multi-reader, multi-case methodology based on an external multicenter data set of 480 examinations with at least 60 examinations per body region (foot and ankle, knee and leg, hip and pelvis, hand and wrist, elbow and arm, shoulder and clavicle, rib cage, and thoracolumbar spine) between July 2020 and January 2021.
View Article and Find Full Text PDFBackground The interpretation of radiographs suffers from an ever-increasing workload in emergency and radiology departments, while missed fractures represent up to 80% of diagnostic errors in the emergency department. Purpose To assess the performance of an artificial intelligence (AI) system designed to aid radiologists and emergency physicians in the detection and localization of appendicular skeletal fractures. Materials and Methods The AI system was previously trained on 60 170 radiographs obtained in patients with trauma.
View Article and Find Full Text PDF