A mathematical description of the regulation of ATP production in muscle cells is presented whereby the activity of OxP can be calculated as a function of (1) free [ADP] as the substrate and (2) a second driving force PhiDelta G (kilojoules per mole) resulting from the difference of free energy Delta G(ox,ap) (kilojoules per mole)-Delta G(ATP,cyt) (kilojoules per mole). In turn, the term Delta G(ox,ap) results from the proton motive force and the generation of ATP in the matrix space including the ATP-ADP exchange, whereas the phosphorylation state of the CHEP-sytem is described by Delta G(ATP,cyt). Regulation of glycolysis is calculated as a function of free [ADP] and [AMP] at the level of PFK.
View Article and Find Full Text PDF