Publications by authors named "Almudena Holguin"

Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population.

View Article and Find Full Text PDF

Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue.

View Article and Find Full Text PDF

Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis.

View Article and Find Full Text PDF

Background: Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies.

View Article and Find Full Text PDF

Over the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from unrelated healthy donors.

View Article and Find Full Text PDF

Using a recently described skin-humanized model based on the engraftment of human bioengineered skin equivalents onto immunodeficient mice, we compared the efficacy of different in vivo gene transfer strategies aimed at delivering growth factors to promote skin wound healing. The approaches involving transient delivery of keratinocyte growth factor (KGF) to wounds performed in the engrafted human skin included (1) KGF gene transfer by intradermal adenoviral injection; (2) KGF gene transfer by adenoviral vector immobilized in a fibrin carrier; and (3) KGF-adenoviral gene-transferred human fibroblasts embedded in a fibrin matrix. All delivery systems achieved KGF protein overproduction at the wound site, with a concomitant re-epithelialization enhancement.

View Article and Find Full Text PDF

The human antimicrobial peptide LL-37 plays an important role in host defense against infection. In addition to its antimicrobial action, other activities have been described in eukaryotic cells that may contribute to the healing response. In this study, we demonstrated that in vitro human cathelicidin activates migration of the human keratinocyte cell line HaCaT, involving phenotypic changes related to actin dynamics and associated to augmented tyrosine phosphorylation of proteins involved in focal adhesion complexes, such as focal adhesion kinase and paxillin.

View Article and Find Full Text PDF