This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load.
View Article and Find Full Text PDFNurse leaders in many settings are responsible for clinic operations. Knowing the medical and financial stakes of each patient encounter, it is not surprising to encounter patients requesting reconsideration of bills after services are provided. This article provides recommendations on how to successfully navigate billing reconsideration requests in outpatient settings.
View Article and Find Full Text PDFIn this study, layer-by-layer coatings composed of heparin and collagen are proposed as an extracellular mimetic environment on nerve guide conduits (NGC) to modulate the behavior of Schwann cells (hSCs). The authors evaluated the stability, degradation over time, and bioactivity of six bilayers of heparin/collagen layer-by-layer coatings, denoted as (HEP/COL). The stability study reveals that (HEP/COL) is stable after incubating the coatings in cell media for up to 21 days.
View Article and Find Full Text PDFThe immunomodulatory potential of human mesenchymal stromal cells (hMSCs) can be boosted when exposed to interferon-gamma (IFN-γ). While pretreating hMSCs with IFN-γ is a common practice to enhance their immunomodulatory effects, the challenge lies in maintaining a continuous IFN-γ presence within cellular environments. Therefore, in this research, we investigate the sustainable presence of IFN-γ in the cell culture medium by immobilizing it in water-stable metal-organic frameworks (MOFs) [PCN-333(Fe)].
View Article and Find Full Text PDFMyasthenia gravis (MG) is an acquired autoimmune neuromuscular junction transmission disorder that clinically presents as fluctuating or persistent weakness in various skeletal muscle groups. Neuroprognostication in MG begins with some basic observations on the natural history of the disease and known treatment outcomes. Our objective is to provide a framework that can assist a clinician who encounters the MG patient for the first time and attempts to prognosticate probable outcomes in individual patients.
View Article and Find Full Text PDFSystems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights.
View Article and Find Full Text PDFThis study was designed to test the hypothesis that in addition to repairing the architectural and cellular cues via regenerative medicine, the delivery of immune cues (immunotherapy) may be needed to enhance regeneration following volumetric muscle loss (VML) injury. We identified IL-10 signaling as a promising immunotherapeutic target. To explore the impact of targeting IL-10 signaling, tibialis anterior (TA) VML injuries were created and then treated in rats using autologous minced muscle (MM).
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2023
Interferon-gamma (IFN-γ) plays a vital role in modulating the immunosuppressive properties of human mesenchymal stem/stromal cells (hMSCs) used in cell therapies. However, IFN-γ suffers from low bioavailability and degrades in media, creating a challenge when using IFN-γ during the manufacturing of hMSCs. Metal-organic frameworks (MOFs), with their porous interiors, biocompatibility, high loading capacity, and ability to be functionalized for targeting, have become an increasingly suitable platform for protein delivery.
View Article and Find Full Text PDFMicroneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated.
View Article and Find Full Text PDFThe rise of tissue-engineered biomaterials has introduced more clinically translatable models of disease, including three-dimensional (3D) decellularized extracellular matrix (dECM) hydrogels. Specifically, decellularized nerve hydrogels have been utilized to model peripheral nerve injuries and disorders ; however, there lacks standardization in decellularization methods. Here, rat sciatic nerves of varying preparations were decellularized using previously established methods: sodium deoxycholate (SD)-based, 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS)-based, and apoptosis-mediated.
View Article and Find Full Text PDFThe demand for large quantities of highly potent human mesenchymal stromal cells (hMSCs) is growing given their therapeutic potential. To meet high production needs, suspension-based cell cultures using microcarriers are commonly used. Microcarriers are commonly made of or coated with extracellular matrix proteins or charged compounds to promote cell adhesion and proliferation.
View Article and Find Full Text PDFPurpose: To identify the relationship between the incidence of Vogt-Koyanagi-Harada (VKH) disease and seasonality.
Methods: A retrospective cohort study was performed, including patients with a confirmed diagnosis of VKH whose month of disease onset was available. Information on patients was entered retrospectively into a database and analyzed according to the month and season.
Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for cell therapies due to their immunosuppressive capacity that can be enhanced in the presence of interferon-gamma (IFN-γ). In this study, multilayers of heparin (HEP) and collagen (COL) (HEP/COL) were used as a bioactive surface to enhance the immunomodulatory activity of hMSCs using soluble IFN-γ. Multilayers were formed, via layer-by-layer assembly, varying the final layer between COL and HEP and supplemented with IFN-γ in the culture medium.
View Article and Find Full Text PDFHuman mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for the treatment of immune-mediated diseases. Culturing hMSCs on tissue culture plastic reduces their therapeutic potential in part due to the lack of extracellular matrix components. The aim of this study is to evaluate multilayers of heparin and poly(L-lysine) (HEP/PLL) as a bioactive surface for hMSCs stimulated with soluble interferon gamma (IFN-γ).
View Article and Find Full Text PDFCancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours.
View Article and Find Full Text PDFThe fibril orientation of type I collagen has been shown to contribute to tumor invasion and metabolic changes. Yet, there is limited information about its impact on tumor cells' behavior in a restrictive growth environment. Restrictive growth environments are generated by the inhibition of a proliferation stimulus during therapy or as an inflammatory response to suppress tumor expansion.
View Article and Find Full Text PDFForward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling.
View Article and Find Full Text PDFThin films are of interest in materials design because they allow for the modification of surface properties of materials while the bulk properties of the material are largely unaffected. In this work, we outline methods for the assembly of thin films using a technique known as layer-by-layer (LbL). Furthermore, their interactions with human mesenchymal stromal cells (hMSCs) are discussed.
View Article and Find Full Text PDFSimultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
This work describes the formulation and evaluation of a chitosan microneedle patch for the transdermal delivery of meloxicam to manage pain in cattle. Microneedle patches composed of chitosan and chitosan/meloxicam were evaluated regarding their chemical composition, uniformity of physical characteristics, capacity to penetrate the skin, and response to thermal and thermo-mechanical changes. Microneedle patches were prepared by varying the percentage of acetic acid used during solution preparation, including 90% (v/v), 50% (v/v), and 10% (v/v).
View Article and Find Full Text PDFIn the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m∙h∙bar.
View Article and Find Full Text PDF