Publications by authors named "Almir J Silva-Junior"

Introduction: Extracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined.

Methods: EVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out.

View Article and Find Full Text PDF

Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of β-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis.

View Article and Find Full Text PDF

Gangliosides, sialic acid-containing sphingolipids, are major constituents of neuronal membranes. According to the number of sialic acids and the structure of the oligosaccharide chain, gangliosides can be classified as simple or complex and grouped in different ganglio-series. Hundreds of gangliosides have been identified in vertebrate cells, with different expression patterns during development and related to several physiological processes, especially in the nervous system.

View Article and Find Full Text PDF

Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease.

View Article and Find Full Text PDF

Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s ), morphologically and functionally.

View Article and Find Full Text PDF

Background: Optic-nerve injury results in impaired transmission of visual signals to central targets and leads to the death of retinal ganglion cells (RGCs) and irreversible vision loss. Therapies with mesenchymal stem cells (MSCs) from different sources have been used experimentally to increase survival and regeneration of RGCs.

Methods: We investigated the efficacy of human umbilical Wharton's jelly-derived MSCs (hWJ-MSCs) and their extracellular vesicles (EVs) in a rat model of optic nerve crush.

View Article and Find Full Text PDF

After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth.

View Article and Find Full Text PDF

Background: Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown.

Methods: We injected rat MSC (rMSC) intravitreally in adult (3-5 months) Lister Hooded rats of either sex after optic nerve crush.

View Article and Find Full Text PDF

Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option.

View Article and Find Full Text PDF

Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3-5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvge96e6fota5b09r2s797rlq7cfjm79q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once