Publications by authors named "Almeyda Zambrano Angelica Maria"

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels.

View Article and Find Full Text PDF

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values.

View Article and Find Full Text PDF

Riparian zones are one of the most productive ecosystems in the world, but are at risk due to agricultural expansion and climate change. To maximize return on conservation investment in mixed-use landscapes, it is important to identify the minimum intact riparian forest buffer sizes to conserve riparian ecosystem services. The minimum riparian forest buffer width necessary to maintain tropical river water quality remains unclear, and there is little analysis of effective riparian buffer lengths.

View Article and Find Full Text PDF

Drone-mounted, high-resolution light detection and ranging reveals the architectural details of an ancient settlement on the Gulf Coast of Florida without parallel in the Southeastern United States. The Raleigh Island shell-ring complex (8LV293) of ca. 900 to 1200 CE consists of at least 37 residential spaces enclosed by ridges of oyster shell up to 4 m tall.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical forests are rapidly converted for agriculture but can regrow naturally through processes called secondary succession, which vary by forest type.
  • Analysis of 1,403 plots across the Neotropics reveals that in wet forests, succession moves from low to high wood density, while in dry forests, it goes from high to low due to different environmental stresses.
  • Understanding these patterns can help optimize species selection for reforestation efforts by matching the wood density of chosen species to that of early successional communities in the specific climate conditions.
View Article and Find Full Text PDF