Publications by authors named "Almerinda Di Venere"

Cytochrome C (cyt C), the protein involved in oxidative phosphorylation, plays several other crucial roles necessary for both cell life and death. Studying natural variants of cyt C offers the possibility to better characterize the structure-to-function relationship that modulates the different activities of this protein. Naturally mutations in human cyt C (G41S and Y48H) occur in the protein central Ω-loop and cause thrombocytopenia 4.

View Article and Find Full Text PDF

The conjugation of proteins with polymers offers immense biotechnological potential by creating novel macromolecules. This article presents experimental findings on the structural properties of maltose-binding protein (MBP) conjugated with linear biodegradable polyphosphoester polymers with different molecular weights. We studied isotopic effects on both proteins and polymers.

View Article and Find Full Text PDF

Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor proteins (TRAFs) are trimeric proteins that play a fundamental role in signaling, acting as intermediaries between the tumor necrosis factor (TNF) receptors and the proteins that transmit the downstream signal. The monomeric subunits of all the TRAF family members share a common tridimensional structure: a C-terminal globular domain and a long coiled-coil tail characterizing the N-terminal section. In this study, the dependence of the TRAF2 dynamics on the length of its tail was analyzed .

View Article and Find Full Text PDF
Article Synopsis
  • TRAF2 is a scaffold protein that is important for activating JNK and autophagy during ER stress, which is linked to disease processes like cancer.
  • In experiments with TRAF2-knockout HAP1 cells, researchers found that these cells had a higher baseline autophagic activity compared to the wild-type cells, and both cell types showed JNK activation and autophagy when exposed to ER stress.
  • Introducing a specific fragment of TRAF2 (residues 310-501) into TRAF2-KO cells inhibited JNK and autophagy activation during ER stress, and this fragment also enhanced cellular resistance to prolonged ER stress by activating the AKT pathway.
View Article and Find Full Text PDF

Dipole Strength (DS) of the amides has gained a renewed interest in chemical physics since it provides an important tool to disclose the on-site vibrational energy distributions. Apart from earlier experimental efforts on polypeptides, little is still known about DS in complex proteins. We accurately measured the Fourier Transform Infrared absorption spectra of nine proteins in water solution obtaining their Molar Extinction Coefficient in the amide I and II spectral region.

View Article and Find Full Text PDF

TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation.

View Article and Find Full Text PDF

Human aromatase is a member of the cytochrome P450 superfamily, involved in steroid hormones biosynthesis. In particular, it converts androgen into estrogens being therefore responsible for the correct sex steroids balance. Due to its capacity in producing estrogens it has also been considered as a promising target for breast cancer therapy.

View Article and Find Full Text PDF

Arachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities.

View Article and Find Full Text PDF

The interaction of cytochrome c (cyt c) with natural and synthetic membranes is known to be a complex phenomenon, involving both protein and lipid conformational changes. In this paper, we combined infrared and fluorescence spectroscopy to study the structural transformation occurring to the lipid network of cardiolipin-containing large unilamellar vesicles (LUVs). The data, collected at increasing protein/lipid ratio, demonstrate the existence of a multi-phase process, which is characterized by: (i) the interaction of cyt c with the lipid polar heads; (ii) the lipid anchorage of the protein on the membrane surface; and (iii) a long-distance order/disorder transition of the cardiolipin acyl chains.

View Article and Find Full Text PDF

In this paper we report a procedure to analyze protein homodimer interfaces.We approached the problem by means of a topological methodology. In particular, we analyzed the subunits interface of about 50 homodimers and we have defined a few parameters that allow to organize these proteins in six different classes.

View Article and Find Full Text PDF

Proteins are located in the twilight zone between chemistry and biology, where a peculiar kind of complexity starts. Proteins are the smallest 'devices' showing a sensible adaptation to their environment by the production of appropriate behavior when facing a specific stimulus. This fact qualifies (from the 'effector' side) proteins as nanomachines working as catalysts, motors, or switches.

View Article and Find Full Text PDF

His596 of human ALOX12 has been suggested to interact with the COO-group of arachidonic acid during ALOX catalysis. In mammalian ALOX15 orthologs Gln596 occupies this position and this amino acid exchange might contribute to the functional differences between the two ALOX-isoforms. To explore the role of Gln596 for ALOX15 functionality we mutated this amino acid to different residues in rabbit and human ALOX15 and investigated the impact of these mutations on structural, catalytic and allosteric enzyme properties.

View Article and Find Full Text PDF

The oligomeric state of TRAF2 (tumor necrosis factor-receptor associated factor 2), a TNF (tumor necrosis factor) receptor-associated factor, is crucial for membrane binding and probably plays a fundamental role in regulating the protein function in vivo. In this study we have combined molecular dynamics with the protein contact network approach to characterize the interaction of the three identical subunits of TRAF2. The average structure obtained after a 225 ns simulation reveals that two clusters of different size are formed, one of which includes almost completely two subunits, while the third monomer appears to be more independent.

View Article and Find Full Text PDF

The ability of a C-terminal truncated form of TRAF2 to bind synthetic vesicles has been quantitatively studied by steady-state fluorescence energy transfer from the protein to large unilamellar vesicles (LUVs) prepared with different lipid mixtures. The dissociation constants, the free energy of binding, and the average number of phospholipids interacting with truncated TRAF2 have been evaluated from the corresponding binding curves. The results indicate that the protein strongly interacts with the lipid bilayer, preferentially in the monomeric state.

View Article and Find Full Text PDF

In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state.

View Article and Find Full Text PDF

Protein homodimers pose some intriguing questions about the relation between structure and stability. We approached the problem by means of a topological methodology based on protein contact networks. We correlated local interface descriptors with structure and energy global properties of the systems under analysis.

View Article and Find Full Text PDF

TNF receptor-associated factors (TRAFs) are characterized by an oligomeric structure that plays a fundamental role in the binding process with membrane receptors. In this work, we studied the trimer-to-monomer (T ↔ 3M) equilibrium transition of the TRAF2 C-terminal domain using both chemical (dilution/guanidinium hydrochloride) and mechanical stress (high pressure) to induce the dissociation of the native protein into subunits. The experimental results and computer simulations indicate that stable monomers exist and that their population accounts for 15% of the total TRAF2 molecules already at a physiological intracellular concentration (≈1 μM), being instead the predominant species in the nanomolar concentration range.

View Article and Find Full Text PDF

Several diseases are related to the lack or to the defective activity of a particular enzyme; therefore, these proteins potentially represent a very interesting class of therapeutics. However, their application is hampered by their rapid degradation and immunogenic side effects. Most attempts to increase the bioavailability of therapeutic enzymes are based on formulations in which the protein is entrapped within a scaffold structure but needs to be released to exert its activity.

View Article and Find Full Text PDF

Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin.

View Article and Find Full Text PDF

Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site.

View Article and Find Full Text PDF

The identification of modules in protein structures has major relevance in structural biology, with consequences in protein stability and functional classification, adding new perspectives in drug design. In this work, we present the comparison between a topological (spectral clustering) and a geometrical (k-means) approach to module identification, in the frame of a multiscale analysis of the protein architecture principles. The global consistency of an adjacency matrix based technique (spectral clustering) and a method based on full rank geometrical information (k-means) give a proof-of-concept of the relevance of protein contact networks in structure determination.

View Article and Find Full Text PDF

Lipoxygenases (LOXs) are lipid-peroxidizing enzymes that are involved in the metabolism of polyunsaturated fatty acids. Their biological activity includes a membrane binding process whose molecular details are not completely understood. The mechanism of enzyme-membrane interactions is thought to involve conformational changes at the level of the protein tertiary structure, and the extent of such alterations depends on the degree of structural flexibility of the different LOX isoforms.

View Article and Find Full Text PDF

Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays.

View Article and Find Full Text PDF

12/15-Lipoxygenases (12/15-LOX) have been implicated in inflammatory and hyperproliferative diseases but the numerous aspects of structural biology of these enzymes are far from clear. Early mutagenesis data and structural modeling of enzyme-substrate complexes suggested that Arg403, which is localized at the entrance of the putative substrate binding pocket, might interact with the fatty acid carboxylic group. On the other hand, side-chain of Arg403 is a part of an ionic network with the residues of α2-helix, which undergoes pronounced conformation changes upon inhibitor binding.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: