Publications by authors named "Almeida-Val V"

The Arctic is warming three times faster than the global average, imposing challenges to cold-adapted fish, such as Arctic char (Salvelinus alpinus). We evaluated stress and metabolic responses of Arctic char to different thermal acclimation scenarios to determine whether responses to thermal variation differed from those to stable exposures. Fish were exposed for 7 days to one of four treatments: (1) control (12°C); (2) mean (16°C), corresponding to the mean temperature of the diel thermal cycle; (3) constant high temperature (20°C); and (4) diel thermal cycling (12 to 20°C every 24 h).

View Article and Find Full Text PDF

The Rio Negro basin of Amazonia (Brazil) is a hotspot of fish biodiversity that is under threat from copper (Cu) pollution. The very ion-poor blackwaters have a high dissolved organic carbon (DOC) concentration. We investigated the Cu sensitivity of nine Amazonian fish species in their natural blackwaters (Rio Negro).

View Article and Find Full Text PDF
Article Synopsis
  • Oxygen levels in aquatic environments affect how fish adapt both behaviorally and genetically.
  • MicroRNAs (miRNAs) play a key role in these adaptations by modulating gene expression in response to environmental stressors like hypoxia.
  • This study found that zebrafish embryos show different gene expression based on whether their male or female parents were exposed to hypoxia, highlighting the significance of both maternal and paternal influences on future generations.
View Article and Find Full Text PDF

Different classes of pesticides such as fungicides, herbicides, and insecticides, can induce differential expression of genes that are involved in tumorigenesis events in fish, including the expression of tumor suppressor tp53. The degree and duration of the stressful condition is decisive in defining which tp53-dependent pathway will be activated. Herein we evaluate the target genes expression that participates in the regulation pathway of the tumor suppressor tp53 and in the cancerous processes in tambaqui after exposure to malathion.

View Article and Find Full Text PDF

The vitellogenin is composed by polypeptides that are precursors of egg yolk proteins that provides embryo and larvae nutrition. The mRNA encoding for vitellogenin Ab (Vtg-Ab; 4,536 bp long and 1,512 amino acids) were obtained by RNA-Seq library sequencing of pirarucu gonads. The Vtg-Ab sequences had high homology with Vtgs of other three teleosts species of the order Osteoglossiformes.

View Article and Find Full Text PDF

Variations in dissolved oxygen levels are common in the Amazonian aquatic environments and the aquatic organisms that inhabit these environments developed a variety of adaptive responses to deal with such conditions. Some Amazonian fish species are tolerant to low oxygen levels and the cichlid Astronotus ocellatus is one of the most hypoxia-tolerant species. Herein, we aimed to unveil the biochemical and molecular responses that A.

View Article and Find Full Text PDF

The main toxicity mechanism of organophosphate insecticides such as malathion is the acetylcholinesterase enzyme inhibition. However, fish responses to organophosphates may vary depending on the activation of different defense mechanisms as well as the length of exposure. As such, the evaluation of acetylcholinesterase activity, in combination with the evaluation of biotransformation and antioxidants enzymes levels, is useful for indicating damage in fish exposed to this insecticide.

View Article and Find Full Text PDF

, known as "tambaqui", is the largest Characiformes fish in the Amazon River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and excellent adaptability to culture systems are some of its remarkable farming features. To support studies into the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the species.

View Article and Find Full Text PDF

The amazon fishes' responses to hypoxia seem to be related to the Amazon basin diversity of aquatic environments, which present drastic daily and seasonal variations in the dissolved oxygen concentration. Among these fishes' adaptation to hypoxia, behavioral, metabolic, physiological, and biochemical responses are well known for some species. In this work, we aimed to identify how two different aquatic environments, normoxic forest streams and hypoxic lakes, dictate the responses to hypoxia for two cichlid species, Mesonauta festivus and Aequidens pallidus.

View Article and Find Full Text PDF

The tambaqui (Colossoma macropomum), migrates annually between whitewater and blackwater rivers of the Amazon. Unlike the whitewater, blackwater is characterized by higher levels of dissolved organic carbon (DOC), including humic acids (HA). Because humic substances impair sensory processes, the current study tested the hypothesis that O and/or CO chemoreception is impeded in blackwater owing to the presence of HA.

View Article and Find Full Text PDF

The Amazon Basin presents a dynamic regime of dissolved oxygen (DO) oscillations, which varies among habitats within the basin, including spatially, daily, and seasonally. Fish species inhabiting these environments have developed many physiological adaptations to deal with the frequent and periodic events of low (hypoxia), or no (anoxia) DO in the water. Cichlid fishes, especially the genus Astronotus (A.

View Article and Find Full Text PDF

Boron oxide nanoparticles (nBO) are manufactured for structural, propellant, and clinical applications and also form spontaneously through the degradation of bulk boron compounds. Bulk boron is not toxic to vertebrates but the distinctive properties of its nanostructured equivalent may alter its biocompatibility. Few studies have addressed this possibility, thus our goal was to gain an initial understanding of the potential acute toxicity of nBO to freshwater fish and we used a variety of model systems to achieve this.

View Article and Find Full Text PDF

Freshwater fish are restricted by their physiology to rivers and lakes, and are generally limited in their capacity to disperse across basins. As a result, there is often a close match between the evolutionary history of river basins and their natural history. Thus, the regional landscape and ecological features, such as temperature, have shaped the evolution and adaptation of local fish assemblages.

View Article and Find Full Text PDF

The presence of intermuscular bones in fisheries products limits the consumption and commercialization potential of many fish species, including tambaqui (Colossoma macropomum). These bones have caused medical emergencies and are an undesirable characteristic for fish farming because their removal is labor-intensive during fish processing. Despite the difficulty in identifying genes related to the lack of intermuscular bone in diverse species of fish, the discovery of individuals lacking intermuscular bones in a Neotropical freshwater characiform fish has provided a unique opportunity to delve into the genetic mechanisms underlying the pathways of intermuscular bone formation.

View Article and Find Full Text PDF

Brazil has five climatically distinct regions, with an annual average temperature difference up to 14 ºC between the northern and southern extremes. Environmental variation of this magnitude can lead to new genetic patterns among farmed fish populations. Genetically differentiated populations of tambaqui (Colossoma macropomum Cuvier, 1818), an important freshwater fish for Brazilian continental aquaculture, may be associated with regional adaptation.

View Article and Find Full Text PDF

The increases in CO concentrations and, consequently, temperature due to climate change are predicted to intensify. Understanding the physiological responses of Pyrrhulina aff. brevis to the climatic scenarios proposed by the IPCC (2014) for the next 100 years is of fundamental importance to determine its susceptibility.

View Article and Find Full Text PDF

Tambaqui (Colossoma macropomum Cuvier, 1818) is an endemic fish of the Amazon and Orinoco basins, and it is the most economically important native species in Brazil being raised in five climatically distinct regions. In the face of current global warming, environmental variations in farm ponds represent additional challenges that may drive new adaptive regional genetic variations among broodstocks of tambaqui. In an experimental context based on the high-emission scenario of the 5th Intergovernmental Panel on Climate Change (IPCC) report, we used two farmed tambaqui populations to test this hypothesis.

View Article and Find Full Text PDF

Fish of the Amazon experience both daily and seasonal variation in temperature and food availability. In the present work, we investigated the influence of nutrient status changes resulting from feeding Colossoma macropomum five flooded forest fruits on aerobic and swimming performance. To assess the effects of diet, three groups of fish were provided different types of food.

View Article and Find Full Text PDF

The present study aimed to evaluate the biological responses of Colossoma macropomum to naphthalene injection and subsequent hypoxia exposure, emphasizing the expression of the tumor suppressor gene tp53. Tambaquis were intraperitoneally injected with naphthalene (50 mg/kg) and, after 96 hours, the fish were transferred to respirometry chambers and, submitted to progressive hypoxia for the determination of critical PO2. In a subsequent experiment, the fish received an intraperitoneal injection of naphthalene and were kept for 96 hours under normoxia.

View Article and Find Full Text PDF

The aquatic habitats of the Amazon basin present dramatic variation of oxygen level, and, to survive such changes, many aquatic animals developed biochemical and physiological adaptations. The advanced teleost Astronotus crassipinnis (Perciformes) is a fish tolerant to hypoxia and known to endure such naturally variable environments. Hypoxia-Inducible factor-1α (hif-1α) is among the most important and studied genes related to hypoxia-tolerance, maintaining regular cellular function and controlling anaerobic metabolism.

View Article and Find Full Text PDF

We examined whether oxidative damage and antioxidant responses are more likely to occur during hypoxia or re-oxygenation in hypoxia-tolerant fish, and whether there is an influence of the rate of re-oxygenation. An hypoxia/re-oxygenation experiment using wild-caught Cyphocharax abramoides (Rio Negro, Brazil), was designed to answer these questions. Lipid peroxidation (MDA), a measure of oxidative damage, and antioxidant activities (superoxide dismutase (SOD), glutathione peroxidase (GPx), antioxidant capacity against peroxyl radicals (ACAP)), were measured in brain, gill and liver tissues after normoxia, 3-h hypoxia (2.

View Article and Find Full Text PDF

Copper oxide nanoparticles (nCuO) are widely used in boat antifouling paints and are released into the environment, potentially inducing toxicity to aquatic organisms. The present study aimed to understand the effects of nCuO and dissolved copper (Cu) on two ornamental Amazon fish species: dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Fish were exposed to 50% of the LC for nCuO (dwarf cichlid 58.

View Article and Find Full Text PDF

The metabolism of fishes is profoundly affected by environmental factors such as temperature, oxygen concentration, and pH levels. Also, biotic elements, for instance, activity levels of species, have been suggested to affect the energy demand, driving their capacity to support environmental challenges. The present work aims to investigate the effects of the lifestyle and swimming activities levels of fishes living in Amazon forest stream on the aerobic metabolism and thermal tolerance.

View Article and Find Full Text PDF

Two Amazonian closely related tetras - cardinal Paracheirodon axelrodi and green neon P. simulans - were artificially acclimatized to environmental chambers mimicking future climate change scenarios (mild, moderate and extreme), using a microcosm facility. P.

View Article and Find Full Text PDF

The Amazonian cichlid is highly tolerant to hypoxia, and is known to reduce its metabolic rate by reducing the activity of energetically expensive metabolic processes when oxygen is lacking in its environment. Our objectives were to determine how protein metabolism is regulated in during hypoxia. Fish were exposed to a stepwise decrease in air saturation (100%, 20%, 10% and 5%) for 2 h at each level, and sampled throughout the experiment.

View Article and Find Full Text PDF