Publications by authors named "Almeida-Suhett C"

Traumatic brain injury (TBI) is a leading cause of human death and disability with no effective therapy to fully prevent long-term neurological deficits in surviving patients. Ketone ester supplementation is protective in animal models of neurodegeneration, but its efficacy against TBI pathophysiology is unknown. Here, we assessed the neuroprotective effect of the ketone monoester, 3-hydroxybutyl-3-hydroxybutyrate, (KE) in male Sprague Dawley rats (=32).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major public health concern in the USA. There are approximately 2.5 million brain injuries annually, 90% of which may be classified as mild since these individuals do not display clear morphological abnormalities following injury on imaging.

View Article and Find Full Text PDF

Approximately, 1.7 million Americans suffer a TBI annually and TBI is a major cause of death and disability. The majority of the TBI cases are of the mild type and while most patients recover completely from mild TBI (mTBI) about 10% result in persistent symptoms and some result in lifelong disability.

View Article and Find Full Text PDF

Background: Differences in the composition of control diets may confound outcomes in studies investigating dietary effects.

Objective: We compared the effects of two control diets commonly used in mice studies, chow (SD) and a purified low-fat diet (LFD), in relation to a chronic high-fat diet (HFD). We hypothesized that SD and LFD will have similar effects on phenotypic, metabolic, and behavioral outcomes.

View Article and Find Full Text PDF

High-fat diet (HFD)-induced obesity is associated with not only increased risk of metabolic and cardiovascular diseases, but cognitive deficit, depression and anxiety disorders. Obesity also leads to low-grade peripheral inflammation, which plays a major role in the development of metabolic alterations. Previous studies suggest that obesity-associated central inflammation may underlie the development of neuropsychiatric deficits, but further research is needed to clarify this relationship.

View Article and Find Full Text PDF

We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13% predicted to be expressed only in neurons.

View Article and Find Full Text PDF

Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region.

View Article and Find Full Text PDF

Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62μg/kg.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major public health concern affecting a large number of athletes and military personnel. Individuals suffering from a TBI risk developing anxiety disorders, yet the pathophysiological alterations that result in the development of anxiety disorders have not yet been identified. One region often damaged by a TBI is the basolateral amygdala (BLA); hyperactivity within the BLA is associated with increased expression of anxiety and fear, yet the functional alterations that lead to BLA hyperexcitability after TBI have not been identified.

View Article and Find Full Text PDF

The discovery that even small changes in extracellular acidity can alter the excitability of neuronal networks via activation of acid-sensing ion channels (ASICs) could have therapeutic application in a host of neurological and psychiatric illnesses. Recent evidence suggests that activation of ASIC1a, a subtype of ASICs that is widely distributed in the brain, is necessary for the expression of fear and anxiety. Antagonists of ASIC1a, therefore, have been proposed as a potential treatment for anxiety.

View Article and Find Full Text PDF

Organophosphorus nerve agents are powerful neurotoxins that irreversibly inhibit acetylcholinesterase (AChE) activity. One of the consequences of AChE inhibition is the generation of seizures and status epilepticus (SE), which cause brain damage, resulting in long-term neurological and behavioral deficits. Increased anxiety is the most common behavioral abnormality after nerve agent exposure.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) often has long-term effects on cognitive function and social behavior. Altered gene expression may be predictive of long-term psychological effects of mTBI, even when acute clinical effects are minimal or transient. Controlled cortical impact (CCI), which causes concussive, but nonpenetrant, trauma to underlying (non-cortical) brain, resulting in persistent changes in hippocampal synaptic function, was used as a model of mTBI.

View Article and Find Full Text PDF

Exposure to nerve agents induces intense seizures (status epilepticus, SE), which cause brain damage or death. Identification of the brain regions that are critical for seizure initiation after nerve agent exposure, along with knowledge of the physiology of these regions, can facilitate the development of pretreatments and treatments that will successfully prevent or limit the development of seizures and brain damage. It is well-established that seizure initiation is due to excessive cholinergic activity triggered by the nerve agent-induced irreversible inhibition of acetylcholinesterase (AChE).

View Article and Find Full Text PDF

Kainate receptors containing the GluK1 subunit (GluK1Rs; previously known as GluR5 kainate receptors) are concentrated in certain brain regions, where they play a prominent role in the regulation of neuronal excitability, by modulating GABAergic and/or glutamatergic synaptic transmission. In the basolateral nucleus of the amygdala (BLA), which plays a central role in anxiety as well as in seizure generation, GluK1Rs modulate GABAergic inhibition via postsynaptic and presynaptic mechanisms. However, the role of these receptors in the regulation of glutamate release, and the net effect of their activation on the excitability of the BLA network are not well understood.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of injury-related death and disability worldwide. Effective treatment for TBI is limited and many TBI patients suffer from neuropsychiatric sequelae. The molecular and cellular mechanisms underlying the neuronal damage and impairment of mental abilities following TBI are largely unknown.

View Article and Find Full Text PDF