The overall structure of pertussis toxoid has been established by analysis of its tryptic digest using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), capillary liquid chromatography-matrix-assisted laser desorption ionization-tandem mass spectrometry (CapLC-MALDI-MS/MS), and ultraperformance liquid chromatography-mass spectrometry(E) (UPLC-MS(E)). In addition to oxidation and hydrolysis of amino acids losses of terminal peptides are observed. On-line UPLC-MS(E) generated a similar sequence coverage as the other two methods that involved off-line fraction collection.
View Article and Find Full Text PDFMALDI-imaging mass spectrometry (IMS) has been shown to be a powerful tool to study drug distributions in organ tissue as well as whole animal bodies. Nevertheless, not all drugs are amenable to MALDI while others may be limited by poor sensitivity poor sensitivity. The use of chemical derivatization to improve detection of small molecules by mass spectrometry techniques is well documented.
View Article and Find Full Text PDFProtein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS.
View Article and Find Full Text PDFAlthough genome databases have become the key for proteomic analyses, de novo sequencing remains essential for the study of organisms whose genomes have not been completed. In addition, post-translational modifications present a challenge in database searching. Recognition of the b or y-ion series in a peptide MS/MS spectrum as well as identification of the b1 - and yn-1 -ions can facilitate de novo analyses.
View Article and Find Full Text PDFStrategies are reported that combine in one step a predictable chemical-based protein digestion with mass spectrometry. Lysine residue amino groups in peptides and proteins are modified by reaction with a peroxycarbonate derived from p-nitrophenol, and tert-butyl hydroperoxide. The peroxycarbonate reacts with lysine residues in peptides and proteins, and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID).
View Article and Find Full Text PDF