Publications by authors named "Alma Y Alanis"

Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications.

View Article and Find Full Text PDF

This article presents an approach to solve the inverse kinematics of cooperative mobile manipulators for coordinate manipulation tasks. A self-adaptive differential evolution algorithm is used to solve the inverse kinematics as a global constrained optimization problem. A kinematics model of the cooperative mobile manipulators system is proposed, considering a system with two omnidirectional platform manipulators with n DOF.

View Article and Find Full Text PDF

Artificial intelligence techniques have been used in the industry to control complex systems; among these proposals, adaptive Proportional, Integrative, Derivative (PID) controllers are intelligent versions of the most used controller in the industry. This work presents an adaptive neuron PD controller and a multilayer neural PD controller for position tracking of a mobile manipulator. Both controllers are trained by an extended Kalman filter (EKF) algorithm.

View Article and Find Full Text PDF

p53 regulates the cellular response to genotoxic damage and prevents carcinogenic events. Theoretical and experimental studies state that the p53-Mdm2 network constitutes the core module of regulatory interactions activated by cellular stress induced by a variety of signaling pathways. In this paper, a strategy to control the p53-Mdm2 network regulated by p14ARF is developed, based on the pinning control technique, which consists into applying local feedback controllers to a small number of nodes (pinned ones) in the network.

View Article and Find Full Text PDF

The effect of meal on blood glucose concentration is a key issue in diabetes mellitus because its estimation could be very useful in therapy decisions. In the case of type 1 diabetes mellitus (T1DM), the therapy based on automatic insulin delivery requires a closed-loop control system to maintain euglycaemia even in the postprandial state. Thus, the mathematical modelling of glucose metabolism is relevant to predict the metabolic state of a patient.

View Article and Find Full Text PDF

Cognitive processing is needed to elicit emotional responses. At the same time, emotional responses modulate and guide cognition to enable adaptive responses to the environment. However, most empirical studies and theoretical models of cognitive functions have been investigated without taking into account emotion, which is considered interference that is counterproductive to the correct functioning of the cognitive system.

View Article and Find Full Text PDF

In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position.

View Article and Find Full Text PDF

With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored.

View Article and Find Full Text PDF

This paper deals with the blood glucose level modeling for Type 1 Diabetes Mellitus (T1DM) patients. The model is developed using a recurrent neural network trained with an extended Kalman filter based algorithm in order to develop an affine model, which captures the nonlinear behavior of the blood glucose metabolism. The goal is to derive a dynamical mathematical model for the T1DM as the response of a patient to meal and subcutaneous insulin infusion.

View Article and Find Full Text PDF

A nonlinear discrete-time neural observer for discrete-time unknown nonlinear systems in presence of external disturbances and parameter uncertainties is presented. It is based on a discrete-time recurrent high-order neural network trained with an extended Kalman-filter based algorithm. This brief includes the stability proof based on the Lyapunov approach.

View Article and Find Full Text PDF

This paper focusses on a novel discrete-time reduced order neural observer for nonlinear systems, which model is assumed to be unknown. This neural observer is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm, using a parallel configuration.

View Article and Find Full Text PDF

This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm.

View Article and Find Full Text PDF