Background: The computational models for predicting oral drug absorption in humans using in vitro and in vivo data have been published. However, only a limited number of studies are available on the prediction of local drug efficacy in the mouth using computational models.
Aim: The goal of this study was to develop a simulation model for prediction of drug amount and effect on carcinogenic acetaldehyde in the mouth.
Using L-cysteine chewing gum to eliminate carcinogenic acetaldehyde in the mouth during smoking has recently been introduced. Besides its efficacy, optimal properties of the gum include stability of the formulation. However, only a limited number of studies exist on the compatibility of chewing gum excipients and stability of gum formulations.
View Article and Find Full Text PDFCigarette smoke contains toxic amounts of acetaldehyde that dissolves in saliva, posing a significant risk of developing oral, laryngeal and pharyngeal carcinomas. L-cysteine, a non-essential amino acid, can react covalently with carcinogenic acetaldehyde to form a stable, non-toxic 2-methylthiazolidine-4-carboxylic acid. The main aim of this study was to find out whether it is possible to develop a chewing gum formulation that would contain cysteine in amounts sufficient to bind all the acetaldehyde dissolved in saliva during the smoking of one cigarette.
View Article and Find Full Text PDF