Objective: Functional and morphologic changes in extracranial organs can occur after acute brain injury. The neuroanatomic correlates of such changes are not fully known. Herein, we tested the hypothesis that brain infarcts are associated with cardiac and systemic abnormalities (CSAs) in a regionally specific manner.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
June 2019
Objective: The role of heparin in acute ischemic stroke is controversial. We investigated the effect of heparin on ischemic lesion growth.
Methods: Data were analyzed on nonthrombolyzed ischemic stroke patients in whom diffusion-weighted imaging (DWI)/perfusion-weighted imaging (PWI) MRI was performed less than 12 hours of last known well and showed a PWI-DWI lesion mismatch, and who underwent follow-up neuroimaging at least 4 days after admission.
J Neurol Neurosurg Psychiatry
April 2018
Background: Glycogen phosphorylase is the key enzyme that breaks down glycogen to yield glucose-1-phosphate in order to restore depleted energy stores during cerebral ischaemia. We sought to determine whether plasma levels of glycogen phosphorylase BB (GPBB) isoform increased in patients with acute ischaemic stroke (AIS).
Methods: We studied plasma GPBB levels within 12 hours and again at 48±24 hours of symptom onset in 172 patients with imaging-confirmed AIS and 133 stroke-free individuals.
On January 30, 2014, a workshop was held on neuroimaging endpoints in high-grade glioma. This workshop was sponsored by the Jumpstarting Brain Tumor Drug Development Coalition, consisting of the National Brain Tumor Society, the Society for Neuro-Oncology, Accelerate Brain Cancer Cure, and the Musella Foundation for Research and Information, and conducted in collaboration with the Food and Drug Administration. The workshop included neuro-oncologists, neuroradiologists, radiation oncologists, neurosurgeons, biostatisticians, patient advocates, and representatives from industry, clinical research organizations, and the National Cancer Institute.
View Article and Find Full Text PDFPurpose: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency.
Materials And Methods: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images.
Background: Voxel-based algorithms using acute multiparametric-MRI data have been shown to accurately predict tissue outcome after stroke. We explored the potential of MRI-based predictive algorithms to objectively assess the effects of normobaric oxygen therapy (NBO), an investigational stroke treatment, using data from a pilot study of NBO in acute stroke.
Methods: The pilot study of NBO enrolled 11 patients randomized to NBO administered for 8 hours, and 8 Control patients who received room-air.
Magnetic resonance imaging (MRI) has been shown to improve the diagnosis and management of patients with brain disorders. Multiparametric MRI offers the possibility of noninvasively assessing multiple facets of pathophysiological processes that exist simultaneously, thereby further assisting in patient treatment management. Voxel-based analysis approaches, such as tissue theme mapping, have the benefit over volumetric approaches in being able to identify spatially heterogeneous colocalized changes on multiple parametric MR images that are not readily discernible.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
May 2008
The recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them.
View Article and Find Full Text PDFThe recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them.
View Article and Find Full Text PDF