Publications by authors named "Allyson Merrell"

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver.

View Article and Find Full Text PDF

Over the last several years, a method has emerged that endows adult hepatocytes with in vitro proliferative capacity, producing chemically induced liver progenitors (CLiPs). However, there is a growing controversy regarding the origin of these cells. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro using rat and mouse models.

View Article and Find Full Text PDF

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver.

View Article and Find Full Text PDF

Over the last several years, a method has emerged which endows adult hepatocytes with proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepatocytes, proliferate. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity .

View Article and Find Full Text PDF

The diaphragm is a domed muscle between the thorax and abdomen essential for breathing in mammals. Diaphragm development requires the coordinated development of muscle, connective tissue, and nerve, which are derived from different embryonic sources. Defects in diaphragm development cause the common and often lethal birth defect, congenital diaphragmatic hernias (CDH).

View Article and Find Full Text PDF

Cancer patients often harbor occult metastases, a potential source of relapse that is targetable only through systemic therapy. Studies of this occult fraction have been limited by a lack of tools with which to isolate discrete cells on spatial grounds. We developed PIC-IT, a photoconversion-based isolation technique allowing efficient recovery of cell clusters of any size - including single-metastatic cells - which are largely inaccessible otherwise.

View Article and Find Full Text PDF

Background And Aims: Following liver injury, a fraction of hepatocytes adopt features of biliary epithelial cells (BECs) in a process known as biliary reprogramming. The aim of this study was to elucidate the molecular events accompanying this dramatic shift in cellular identity.

Approach And Results: We applied the techniques of bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, and assay for transposase-accessible chromatin with high-throughput sequencing to define the epigenetic and transcriptional changes associated with biliary reprogramming.

View Article and Find Full Text PDF

Although immunotherapy has revolutionized cancer care, patients with pancreatic ductal adenocarcinoma (PDA) rarely respond to these treatments, a failure that is attributed to poor infiltration and activation of T cells in the tumor microenvironment (TME). We performed an CRISPR screen and identified lysine demethylase 3A (KDM3A) as a potent epigenetic regulator of immunotherapy response in PDA. Mechanistically, KDM3A acts through Krueppel-like factor 5 (KLF5) and SMAD family member 4 (SMAD4) to regulate the expression of the epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Epithelial plasticity, reversible modulation of a cell's epithelial and mesenchymal features, is associated with tumor metastasis and chemoresistance, leading causes of cancer mortality. Although different master transcription factors and epigenetic modifiers have been implicated in this process in various contexts, the extent to which a unifying, generalized mechanism of transcriptional regulation underlies epithelial plasticity remains largely unknown. Here, through targeted CRISPR/Cas9 screening, we discovered two histone-modifying enzymes involved in the writing and erasing of H3K36me2 that act reciprocally to regulate epithelial-to-mesenchymal identity, tumor differentiation, and metastasis.

View Article and Find Full Text PDF

To maintain proper organ size, nature has devised trans-organ communication systems-involving both paracrine and circulating regulatory factors-to safeguard homeostasis. In this issue of Developmental Cell, Ji et al. (2019) now describe an enterohepatic feedback loop that balances tissue size and function in the mammalian liver.

View Article and Find Full Text PDF

The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets.

View Article and Find Full Text PDF

Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response.

View Article and Find Full Text PDF

The diaphragm is an essential mammalian skeletal muscle, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDHs), a common and often lethal birth defect. The diaphragm is derived from multiple embryonic sources, but how these give rise to the diaphragm is unknown, and, despite the identification of many CDH-associated genes, the etiology of CDH is incompletely understood. Using mouse genetics, we show that the pleuroperitoneal folds (PPFs), which are transient embryonic structures, are the source of the diaphragm's muscle connective tissue and regulate muscle development, and we show that the striking migration of PPF cells controls diaphragm morphogenesis.

View Article and Find Full Text PDF

The mammalian diaphragm muscle is essential for respiration, and thus is one of the most critical skeletal muscles in the human body. Defects in diaphragm development leading to congenital diaphragmatic hernias (CDH) are common birth defects and result in severe morbidity or mortality. Given its functional importance and the frequency of congenital defects, an understanding of diaphragm development, both normally and during herniation, is important.

View Article and Find Full Text PDF

Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4(GFPCre) mice allow genetic manipulation of these fibroblasts.

View Article and Find Full Text PDF

Vertebrate muscle arises sequentially from embryonic, fetal, and adult myoblasts. Although functionally distinct, it is unclear whether these myoblast classes develop from common or different progenitors. Pax3 and Pax7 are expressed by somitic myogenic progenitors and are critical myogenic determinants.

View Article and Find Full Text PDF